Hyperbolic Heat Transfer Equation for Radiofrequency Heating: Comparison between Analytical and COMSOL Solutions

V. Romero-García[1], M. Trujillo[2], M.J. Rivera[2], J.A. López Molina[2], and E.J. Berjano[3]
[1]Centro de Tecnologías Físicas Acústica, Universidad Politécnica de Valencia, Valencia, Spain
[2]Dpto. Matemática Aplicada, Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain
[3]Institute for Research and Innovation on Bioengineering, Universidad Politécnica de Valencia, Valencia, Spain
Publié en 2009

The Radiofrequency Heating (RFH) is widely employed to heat biological tissue in different surgical procedures. Most models analyze the RFH employing a Parabolic Heat Transfer Equation (PHTE) based on Fourier's theory. The PHTE can be used for problems involving long heating times or low thermal gradients. However, when the problem involves short heating times or extreme thermal gradients it is needed to solve it using the Hyperbolic Heat Transfer Equation (HHTE), where a wavy behavior of heat conduction with a finite thermal propagation speed is assumed. We have recently proposed a model to study the temperatures profiles which are produced in biological tissue when it is heated by RF introducing the effect of the blood perfusion. The electrical-thermal coupled problem has been analytically solved by using the HHTE.

Téléchargement