Viscous Heating in a Fluid Damper
Application ID: 8568
Fluid dampers are used in military devices for shock isolation and in civil structures for suppressing earthquake-induced shaking and wind-induced vibrations, among many other applications. Fluid dampers work by dissipating the mechanical energy into heat. This model shows the phenomenon of viscous heating and consequent temperature increase in a fluid damper. Viscous heating is also important in microflow devices, where a small cross-sectional area and large length of the device can generate significant heating and affect the fluid flow consequently. The Conjugate Heat Transfer, Laminar Flow and Moving Mesh interfaces are used with a time dependent study in this model.
This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Grille des Spécifications and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.