Internal Short Circuit in a Lithium-Ion Battery
Application ID: 34891
During an internal short circuit of a battery, the two electrode materials are internally and electronically interconnected, giving rise to high local current densities. Internal short circuits may occur in a lithium-ion battery due to, for instance, lithium dendrite formation or a compressive shock. A prolonged internal short circuit results in self discharge in combination with a local temperature increase. The latter effect is important because the electrolyte may start to decompose by exothermic reactions if the temperature reaches above a certain threshold, causing thermal runaway with potential health and safety hazards.
This tutorial model investigates the local temperature rise due to the occurrence of a penetrating metallic filament in the separator between the two porous electrode materials. The physics are set up using the Lithium-Ion Battery interface coupled to the Heat Transfer interface. The battery chemistry consists of a graphite negative electrode and an NMC positive electrode with an LiPF6 electrolyte.
This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Grille des Spécifications and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.