Heterojunction 1D
Application ID: 14617
This benchmark model simulates three different heterojunction configurations under forward and reverse bias. It shows the difference in using the continuous quasi-Fermi level formulation versus the thermionic emission formulation for the charge transfer across the heterojunction. The simulated energy levels are compared between each configuration in order to illustrate the origin of the charge transfer, that is, whether it is primarily from holes in the valence band or from electrons in the conduction band. The computed I-V curves for each configuration are compared with results from the literature. Several methods for better convergence are demonstrated in the setup of the various study steps.
This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Grille des Spécifications and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.