Pierce Electron Gun
Application ID: 87781
An electron gun must be able to draw a sufficient current and accelerate the electrons to the desired speed. The first part of an electron gun geometry presents unique design challenges because the emitted electron speeds are usually lowest there, and therefore the space charge density is quite high. The Pierce electron gun design uses electrodes with a particular shape to counteract the Coulomb repulsion between electrons in the beam. As a result, the electrons in the beam propagate in straight lines. The emitted electrons at the cathode are assumed to be space charge limited; the initial thermal distribution of electron velocities is neglected.
This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Grille des Spécifications and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.