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Introduction 

 
Benard-Rayleigh convection is a formation of stable 

circulation contours in a fluid that moves between two 

horizontal plates heated from below. This phenomenon attracts 

the attention of researchers from both applied [1,2] and 

fundamental [3,4] areas. The significant progress in the 

description of Benard-Rayleigh convection was achieved using 

the Lorentz system of ordinary differential equations, which led 

to the development of the strange attractor concept [5]. 

However, the analysis of the Lorentz system implies 

simplifications: the independence of the fluid properties on 

temperature (except for the density) and the keeping of only 

lower-order terms in the Fourier representation of the stream 

function [6]. The computational capabilities of computers and 

the availability of software codes in recent years make it 

possible to study the dynamics of Benard-Rayleigh convection 

using the computationally-intensive Navier-Stokes equations 

that do not have the restrictions above. 

 

Phase portraits analysis is a useful method to represent 

the directional behavior of ordinary equations systems [7]. To 

plot the phase portrait for a Navier-Stokes system, one has to 

introduce ordinary equations of motion for the fluid control 

volumes. If Navier-Stokes equations are solved using 

Lagrangian formulation [8] it can be done by simply tracking 

the Lagrangian coordinates. However, the majority of software 

including COMSOL uses the Eulerian formulation. This 

approach leads to the need for additional equations of motion 

for fluid control volumes. In the framework of COMSOL, it can 

be implemented using the Particle Tracing Module with 

massless particles. The particles’ velocities at every coordinate 

and time moment are coincident with the correspondent 

velocity of fluid computed from Navier-Stokes equations. 

  

In this paper, we explore the possibilities of phase 

space analysis to studying the Benard-Rayleigh convective flow 

using the numerical solution of the Navier-Stokes equations and 

equations of motion for massless particles. 

 

Mathematical model  
 

Benard-Rayleigh convection can be described using 

incompressible Navier-Stokes equations with an additional 

equation for heat transfer in Boussinesq approximation: 
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where v  is velocity, P is pressure, ρ0 is the density of fluid at 

characteristic temperature T0,  ν is kinematic viscosity, g  is 

free-fall acceleration, β is volume expansion coefficient, χ is 

heat diffusivity. Archimedes buoyant force is accounted for by 

the term βg T  in the momentum equation. 

 

Boussinesq approximation establishes the linear 

dependence of fluid density on the temperature: 

 

0ρ( ) ρ (1 βθ),T = −                                      (2) 

 

where θ = T – T0.    

 

 The following boundary and initial conditions were 

set: 
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where Ω is the computational domain, Г is the boundary of the 

domain, xmax is the maximal value of x-coordinate in the 

domain, ymax is the maximal value of y-coordinate in the 

domain, λ is the heat conduction coefficient, n  is the local 

normal to Г. 

 

 Massless particles with coordinates qi were uniformly 

distributed inside the computational domain (Figure 1). After 

Navier-Stokes solution reaches stationary state we begin to 

integrate the equations of motion: 
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 The equation (4) states that equations of motion for 

particles are being solved simultaneously with equations (1) 

and the velocity of each particle is defined only by a fluid 

velocity in the same point of space. Note, that the resulting 

trajectories are different from the standard streamlines. 

Streamlines are usually being integrated over the velocity field 

at a fixed time moment, and Eqs. (4) are considering the time-

dependent velocity field, taking into account periodical 

fluctuations and quasiperiodicity. Such an approach allows 

obtaining the trajectories fully matching with trajectories of 

fluid control volumes in the Lagrangian formulation. 

 

 
Figure 1. Initial spatial distribution of massless particles released 

inside of the computational domain. Color indicates the particle 

velocity magnitude. 

 

Numerical methods 
 

The Navier-Stokes equations were solved as 

implemented via the CFD Module (laminar). Velocity was 

discretized using parabolic basis functions, both pressure and 

the temperature were discretized using linear functions. 

Backward differentiation formula of 3rd order was used for time 

integration and PARDISO solver [9] was used for the solution 

of systems of linear equations. 

 

Particle tracing was performed with the Particle 

Tracing Module. Equations of motion were integrated using the 

Dormand-Prince method [10].   

 

The computational mesh had 104 elements including 

102 boundary elements. Mesh becomes denser near the wall to 

better resolve the flow in the boundary layers.  

      

 
Figure 2. Fragment of the computational mesh. 

 

 

Results and discussion 

 
The Rayleigh number  [6] defines the behavior of the 

system with convective heat transfer: 
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where L is the distance between the hot and cold boundary.  

 

In the range of Rayleigh number Ra = 102 – 106, the 

two-dimensional flow for such a system qualitatively remained 

similar. We focused on Ra = 2ꞏ105 as it provides faster 

convergence to the stationary state. 

 

The material parameters such as viscosity, expansion 

coefficient, heat diffusivity, and heat conduction coefficient 

were set corresponded to air. The temperature difference 

between the hot and cold boundaries was 5.5 K, the initial 

temperature of the domain was coinciding with the 

Tcold = 293.15 K.  

 

The stationary state was reached in 40 s of simulated 

time. The found flow characteristics in a single convective cell 

are given in Figure 3. The cell is established to consist of a pair 

of vortices rotating in opposite directions (Fig.3a,c). Hot air 

rises due to the buoyancy force and drag by vortices in the 

center of the convective cells (Fig 2b). This is in coincidence 

with existing physical concepts [11].  

 

 
(a)                                       (b) 

 
      (c) 

 

Figure 3. Spatial distribution of Benard-Rayleigh flow characteristics 

at a stationary state for Ra = 2ꞏ105: (a) – velocity magnitude, (b) – 

temperature, (c) – streamlines. 

 

 The height dependences of the flow characteristics 

inside one of the vortices are given in Figure 4. After the flow 

stabilization at 40 s, both x- and y-components of the velocity 

become symmetrical about the center of the vortex (Fig.4a).   

 

The temperature distribution inside the vortex was 

found to be almost uniform (Fig.4b). The noticeable changes of 

the temperature occur only between the vortex edges and the 

hot (or cold) boundary. 
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Figure 4. Dependence of (a) x- and y-components of velocity and 

(b) temperature on y inside a vortex in different time moments.  

1, 2, 3 – vx at 20, 30 and 40 s; 4, 5, 6 – vy at 20, 30 and 40 s; 7, 8, 9 – T 

at 20, 30 and 40 s, respectively. 

 

To analyze the phase space of the system we placed 

80 000 massless particles into the computational domain. The 

integration of equations of motion was coupled with the time-

integration of the Navier-Stokes equation.  

 

We built the new “Particles” dataset in the “Datasets” 

node of the “Results” section of COMSOL. The geometry of 

the particles was based on the transient study solution for 

Particle Tracing interface. The position-dependent variables 

were changed from the standard (qx,qy) to (qx,qxt) or (qy,qyt). 

This allows us to plot the particles in phase space using all the 

standard COMSOL functionality for visualization of particles. 

 

Phase portraits for 80 000 particles are given in 

Figure 5. The portraits show stability and possess a constant 

smooth envelope both in (qx,qxt) coordinates (Fig.5a) and 

(qy,qyt) coordinates (Fig.5b).  

 

      
(a)                                                 (b) 

 

Figure 5. Phase portraits for massless particles ensemble (a) in 

coordinates (qx,qxt) and (b) in coordinates (qy,qyt). Color indicates the 

velocity magnitude of the particles. 

 Trajectories of particles in (qx,qxt) for a single 

convective cell are given in Figure 6. It can be seen that 

particles can be divided into two groups.  

 

The first group consists of the particles with 

trajectories rotating about the two centers divided by the 

stationary manifold. Points of this group cannot transit from the 

orbit around one of the centers to the orbit around another one. 

A similar picture is observed for phase trajectories in (qy, qyt) 

coordinates.  

 

The second group consists of the particles which can 

pass through the common point between the neighborhoods of 

the two centers. These particles are characterized by a 

temperature close to the highest or the lowest temperature in the 

whole system (Fig.6). These particles in real space move in the 

boundary layers near the hot or the cold wall and do not belong 

to stable vortices rotating with the same angular velocity. 

 

 
(a) 

 

 
(b) 

 

Figure 6. Phase trajectories for massless particles (a) in coordinates 

(qx,qxt) and (b) in coordinates (qy,qyt). Color: local temperature of the 

particle. 

 

 The kinetic energy of each particle in arbitrary units 

can be estimated as the square of velocity magnitude. The 

energy distribution over all particles is given in Figure 7a. We 

can see three characteristical peaks on the histogram. In order 

to understand the role of these peaks we colored the particles in 

the domain with color related to each peak (Fig 7b).  

 

The first peak with the smallest energy is attributed to 

the almost non-moving particles near the walls and in the 

centers of vortices. The middle-energy peak is related to the 

particles on the boundary of the vortices which are also 



influenced by the non-moving particles near the walls. The 

high-energy peak is attributed to the characteristical energy of 

particles in the vortex away from the walls and the non-moving 

vortex centers. 

 

 
(a) 

 

 
(b) 

 

Figure 7. Energy distribution over the particles: (a) histogram over the 

normalized energy and (b) particles in the domain colored in the 

dependence of their energy: blue color – lowest energy peak, orange 

color – medium energy peak, red color – highest energy peak. 

 

Conclusions 
 

A new method for the construction of system phase 

portraits was developed. The method uses the embedded 

functionality of COMSOL and provides a simple and robust 

approach for the analysis of systems described by the Navier-

Stokes equations. The main idea of the method is the 

introduction of massless particles into the flow area with 

velocities coinciding with the local velocity of the fluid. Such 

particles represent the control volume of fluid. The further 

analysis of particles’ trajectories allows building the phase 

portraits.  

 

 This method was tested on a system with Benard-

Rayleigh convection with Ra = 2ꞏ105. It was shown that phase 

trajectories of the fluid control volumes in such a system may 

be divided into two groups. The first group represents particles 

that are rotating around the special point centers. The second 

group represents particles with a very high and low temperature 

in a system that can freely transit between two stable 

neighborhoods of the above-mentioned centers. 

 

 The analysis of massless particles allows the analysis 

of the characteristical kinetic energy of the flow. Energy 

distribution in Benard-Rayleigh convection showed three 

peaks. The first peak with the smallest energy is related to the 

particles near the walls, the second peak is attributed to the outer 

boundary of the vortices and the third peak marks the 

characteristic energy of the vortex away from the walls and the 

vortex center. 
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