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Outline

» Overview of bioconversion processes to produce organic acids from biomass
and biomass wastes

» Downstream separation processes for extraction of organic acids from
fermentation broths at low pH

» Adsorption equilibrium and kinetics in the sorption of organic acids

» Fixed-bed sorption dynamics and adsorber configurations for enhanced
recovery

» Multicomponent adsorption dynamics



Introduction

Organic acids

\

Chemical process Biobased production
Petroleum, natural gas Organic waste materials

| |

Low cost but unsustainable Sustainable and renewable

Global acetic acid demand ~ 13 million tons in 2015!

65% of acetic acid produced via methanol carbonylation?

Global lactic acid demand expected to reach 1.9 million tons by 20203
>90% of lactic acid produced via fermentation3

By 2100, more than 95% of chemicals and polymers are envisioned to be
produced from renewable resources* 6



Production of organic acids from renewable sources and the need for efficient

recovery
Liquid-liquid
C D Distillation ~ Extraction
B I Separation &
é e recovery
"
: Membrane based Sorption
Anaerobic

processes Acetic acid

Biomass  fermentation (Cryotech CMA”)

(Sugars) (pH ~6-7 and T 60°C)

* Acetic acid uses in food, polymer, and other industries. Emerging use in
production of calcium magnesium acetate (CMA) road deicer and
potassium acetate (KA) aircraft deicer

* CMA from synthetic acetic acid ~$1900 per ton

* CMA is biodegradable and an environmentally benign alternative for rock
salt with a potential demand of 25 million tons per vear in North Americas



Anaerobic fermentation of carbohydrates to acetic acid

Bacteria pH T
e Clostridium thermoaceticum 6.5-7.0 ~ 60°C
e C. thermoaceticum and
M. thermoautotrophica 6.4—-7.0 ~60°C
 C. formicoaceticum and
L. lactis 7.6 ~ 58°C



Adsorption for recovery of acetic and lactic acids from aqueous solutions
Tung and King, 1994
1

08 1 * Uptake capacity of weak
g .g i base resins decrease with
gg ‘ gy increase in solution pH
%E 04 - i * Not feasible to
338 X Amberlite IRA3S . economically recover acetic
5% 02 A L il or lactic aid at neutral pH

Challenges in the application of bioprocesses for acetic acid production:
» Conduct fermentation at low pH and ambient temperature
» Enhance bed capacity utilization 5



Novel low pH fermentation process for the production of organic acids from

biomass and biomass wastes

Pentoses majorly
xylose

Extractive

Typical composition of
biomass and biofiber

XyI ose L. buchneri immobilized in
alumina fibers in CSTR

Anoxic fermentation
(pH ~4 and T 35°C)

using xylose

fermentation
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Veeravalli and Mathews, 2018

Novel pH ~4 bacterial fermentation for acetic and lactic acids production

32 g/L acetic acid and 67 g/L lactic acid were produced in fed batch
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Objectives

* Recovery of acetic and lactic acids at low pH using
adsorption technology

 Evaluation of adsorption contactor for enhanced
bed capacity utilization

* Modeling of sorption process on granular activated
carbon (GAC) and synthetic resins

* Implementation of model solution using COMSOL
software



Fixed-bed adsorbers to recover organic acids from fermentation broth

Fermentation tank
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Bed capacity utilization

Concentration profile along the bed length Breakthrough curve
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Adsorption of organic acids on weak base resins

Purolite A835

l‘{_,.,.—»""/ : /

]| Polymer— CH, —N + HA
f;c_‘_“_\.\.\_\_\_\\ : CH3 :
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Adsorption kinetics: Mass transfer mechanisms in the transport of solute

Pore diffusion

-
-
-

" External mass transfer

-J' », Bulk solution

U 4

Stagnant layer
Batch reactor

Resin particle
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Governing equations for batch adsorber kinetics

* The differential mass balance for adsorption of c (z,t) is given by: C D

Bulk phase mass balance

Vaci_l_aqi —0
ot ot

Batch reactor

Intraparticle transport

aq; _ 12 0 [rz (Di %)] Initial and boundary
ot  r?or ar conditions
Isotherm t =0: ¢; = cy;
0<r<mn,t=0:q=0
0 = dmiKic; 94,
i — k = = =V,
1"‘2] chj r=0,t>0: 3t s 0;
d2q;
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=Tp 16



Governing equations for batch adsorber kinetics

The differential mass balance for adsorption of ¢ (z,t) is given by:

Particle phase mass balance
0q 0%q 20q
at De (0r2 +;0r

Analytical solution

2
T“D,t
mg 6 (‘ rzc>
> exp c

a <0.1

Mo T
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Analytical solution
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m ex(
—t:1—6z 5 P
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Governing equations for a fixed-bed adsorber

Accumulation rate of C =rate of C {[in by dispersion]-[out by dispersion]

The differential mass balance for adsorption of c (z,t) is given by: Y

+[in by convection]-[out by convection]-[loss by adsorption]} dX| 8888

Bulk phase mass balance

X
d0%c;  dc¢; Oc; (1 — eb> 3 Y
—Dy; +v—+—+ —kf-(c-—c r=rp) = 0
Fox? L ox ot & Jrp T PP Initial and boundary
conditions
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Materials and Methods: Fixed-bed adsorber configurations

Inlet — Inlet — Inlet — Inlet —

/ \ 4 \ v

1 ‘ 2 4 l 5 l
Outlet Outlet Outlet Outlet Outlet

Adsorber configurations: (1) conventional cylindrical adsorber (CCA) with single particle size, (2)
normally stratified cylindrical adsorber (SCA), (3) reverse stratified cylindrical adsorber, (4)
reverse stratified tapered adsorber (RSTA), and (5) tapered bed with single particle size 19



Physicochemical properties of granular activated carbon
and operational parameters

Property @iﬁed adso@

Particle size (cm) 0.065 Mesh fraction Particle size (cm)
Bulk density (g/cm3) 0.701 18-20 0.092
Particle porosity 0.66 20-25 0.077
25-30 0.065
Operational parameters 30-35 0.055
Amount of resin (g) 40 35-40 0.046
Superficial velocity (cm/min) 2.36

Bed length (cm) 20

Bed diameter (cm) 554 Tapered bed adsorber dlmen@
Bed leRngtn (LIII) 14.4

Inlet concentration of Acetic 15

acid (g/L) Bed diameter top (cm) 2

Isotherm constant, a (g/g) 0.186 Bed diameter bottom (cm) 4
Isotherm constant, b (L/g) 0.53
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Physicochemical properties of Purolite A835 resin and
operational parameters

~_Property Gatiﬁed adsorD

@artlcle size (cm) 0.06D Mesh fraction Particle size (cm)
Wet particle density (g/cm?3) 1.072 20-25 0.077
Particle porosity 0.28 25-30 0.065
30-35 0.055
Operational parameters
Amount of resin (g) 62 Tapered bed adsorber dimensions
Superficial velocity (cm/min) 2.36 Bed length (cm) 13.25
Bed length (cm) 18 Bed diameter top (cm) 2.44
Bed diameter (cm) 254 Bed diameter bottom (cm) 3.5

nlet concentration of Acetic acid
(/L) =
& pH of Multicomponent studies

Maximum adsorption capacity, q,,,,
0.27 2.8 4.8
(g/8) < )

Isotherm constant, k (L/g) 0.506 21




Operational parameters

Axial dispersion coefficient Pore diffusion coefficient

- : . . Mackie and Maeres, 1955
(Suzukiand Smith, 1972)  External mass transfer coefficient | )
(Dwivedi and Upadhyay, 1977)

X

Component D, (cm?/min) K{cm/min) D, (*10* cm?/min)
Acetic acid 0.128 0.101 2.7
Component D, (cm?/min) K:(cm/min) D, (*10° cm?/min)
Acetic acid 0.128 0.018 6.6
Lactic acid 0.095 0.016 2.7

T @
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Implementation in COMSOL Multiphysics®
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Implementation in COMSOL Multiphysics®

Coefficient form PDE interface in COMSOL Multiphysics®
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0., g acetic acid adsorbed on g sorbent

Single component adsorption equilibria of acetic acid: Experimental data

0.30
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* Uptake capacities of weak base

resins were higher compared to
® X GAC

0.20

0.15 1

e Purolite A835 had highest
sorption capacity among the

0.10 ¥
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Activated carbon

7 ([ ]
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Acetic acid concentration, g/L
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Adsorption kinetics of acetic acid on GAC and resins: Experimental data
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e All sorbents show a common
pattern of rapid decrease in first
few minutes

* |tis followed by little or no
v change in concentration over
the time range studied
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Adsorption kinetics of acetic acid on GAC and resins: Kinetic parameters

Linearized equation of infinite bath system Nonlinear finite bath equation
1.2
'1 N a PN
1.0 g ! T — 7
£ 0.8 o
E*l o s
=3 £ 06
- 3 Y =-0.0261x-0.49 e
~ "0 ] 2 _
= r-=0.99 0.4
Y =-0.127x-0.49
-4 2 =087 @ Y =-0.0307x-049 0.2
=098
0-0 T T T T
0 20 40 60 - 80 -100 120 140 160 180 60 80 100 120
Time, minutes Time, minutes
e Activated carbon e Amberlite IRA67 ¥ Amberlite IRA96

PpTp ln(c_co)
3IW ¢t

* External mass transfer coefficient, k,, is determined using: kf =

* Intraparticle diffusivity, D, is obtained using linearized equation obtained for
infinite bath system and nonlinear finite bath system equation
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Adsorption kinetics of acetic acid on GAC and resins: Kinetic parameters

GAC Amberlite IRA67 Amberlite IRA96
kf(cm/sec) 1.98E-3 5.33E-3 2.72E-3
D_(cm?/sec) Equation (4.7) 1.59E-7 0.530E-7 0.537E-7
D_(cm?/sec) Equation (4.9) 1.94E-7 0.158E-7 0.304E-7
ARE 1.17 11.23 11.08

k; was lower for GAC because of its low sorption capacity and the low sorbent to
solute ratio (0.375 g/L) used to effectively suspend it

k; of Amberlite IRA67 was higher than that of the Amberlite IRA96

For GAC, a was 0.15, and D, obtained from the finite system equation is 22% higher
than that from the infinite volume system equation.

But, D obtained for Amberlite IRA67 and Amberltie IRA96 resins are much more
different from each other as a values were 0.69 and 0.45, respectively.



Single component adsorption dynamics Iin
stratified beds



Single component adsorption dynamics

Cylindrical column

Single adsorbent particle size Concentration profile along the bed length
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Single component adsorption dynamics

Cylindrical column
Normal stratification
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Single component adsorption dynamics

Cylindrical column Concentration profile along the bed length
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Single component adsorption dynamics

Tapered column
Reverse stratification
Feed
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organic acids
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Breakthrough curve analysis

Cylindrical adsorber with single adsorbent particle size

1.0 . ° o o | {
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Exit concentration profile, c/cg
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—— Model prediction )
e Experimental data ®  Experimental data
Model prediction
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0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 100 110

Time, minutes Time, minutes

GAC Purolite A835

* Constant pattern solute front develops

* Mass transfer effects are uniform along bed length .,



Breakthrough curve analysis

Cylindrical adsorber with normally stratified adsorbent
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* Solute front disperses along the bed length

* t,decreases and t, increases .



Breakthrough curve analysis

Cylindrical adsorber with reverse stratified adsorbent (GAC)
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Exit concentration profile, c/cq
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e Data
—— Maodel prediction

0.0 * : ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70
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* Solute front sharpens along the bed length

* t,increases more compared to the increase in ¢,
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Breakthrough curve analysis

Tapered adsorber with reverse stratified adsorbent
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* Solute front sharpens along the bed length

 Combined effect of decrease in shock front velocity and increase in

mass transfer effects "



Comparison of exit concentration profiles: Cylindrical adsorber with normal
stratified adsorbent and tapered adsorber with reverse stratified adsorbent
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Comparison of exit concentration profiles: SCA and RSTA with 5 layers of
adsorbent particles at double bed length (GAC)

1.2
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 Double bed length is required for SCA to match the performance of RSTA
* RSTA will require lower adsorbent inventory and reduces the total cost



Comparison of shock front velocities and MTZ lengths for various packed bed

configurations (GAC)
. Cylindrical . . .
Experimental y ) Normal stratified Reverse stratified Reverse stratified
adsorber - single . .
parameters i i cylindrical bed cylindrical bed tapered bed
particle size
t,, Min 24.8 23.3 27.6 26
t, min 39.3 42.5 43 35
t) 7, MIN 14.5 19.2 15.4 9
U,,, cm/min 0.612 0.511 0.445 0.308
8.874 [ 9.81 /7 6.85 /) 2.77@
. | & | S | S
Fi /
ractional bed 0.78 0.76 0.82 0.90
apacity utilization
Fractional bed
capacity utilization 0.91 0.96

at double bed length
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Multicomponent adsorption dynamics



Breakthrough profiles for mixed acid: pH 2.8
Lactic acid C,= 15 g/L, Aceticacid C,=6 g/L

Dimensionless concentration, c/c

i = qmiKi Cpi
PP 1+ YKKic,

1.8

®  Acetic acid
16 - v Lactic acid
Model prediction
Model prediction
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 Competitive effect of organic acids on Purolite A835 resin

 Roll-over effect occurs and exit concentration of acetic acid is 1.6 times inlet

concentration
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Conclusion

» The recovery of organic acids from aqueous solutions was modeled using
the General Rate Model that considers external and intraparticle diffusion
resistances and nonlinear adsorption isotherm

» COMSOL Multiphysics software was found to be an effective tool for
process modeling of batch and fixed-bed adsorbers.

» Process modeling of stratified beds was effectively implemented using
COMSOL software

» Kinetic parameters estimated from batch studies gave good predictions for
the experimental data

» Reverse stratified tapered adsorber shows higher bed capacity utilization
compared to other configurations

» COMSOL implementation of multicomponent adsorption dynamics
correctly predicted roll over effects of components



