Investigation On The Role Of Aperture Wall Thickness for The Generation Of Sheet Electron Beam Using COMSOL Multiphysics[®]

K. Singhal¹, N. Gurjar¹, S. Jain¹, N. Kumar¹

1. Vacuum Microelectronic Devices Group, Microwave Devices Area,

CSIR-Central Electronics Engineering Research Institute, Pilani, Raj.-333031, INDIA

INTRODUCTION:

- With increase of operational frequency of the microwave devices, the dimensions of the beam-wave interaction region gets reduced
- In THz frequencies, the dimensions are in sub millimeter ranges for which high current density electron beam is required
- For planar interaction structure, the sheet beam is required for the maximum beam-wave interaction
 Dimensions of hollow cathode aperture wall plays a major role in efficient sheet electron beam generation
 The role of the hollow cathode aperture wall thickness for high current density sheet electron beam has been reported

RESULTS:

• The change the electron beam current and the hollow cathode phase with respect to the change in aperture wall thickness (ranging from 1.05 mm- 3.65mm) has been shown in figure 4.

COMPUTATIONAL MODEL:

A 2D hollow cathode geometry has been modeled with different aperture wall thickness in COMSOL[®].

UTILIZED MODULE :

The present work is carried out using the Plasma Module of COMSOL Multiphysics[®]. Argon is used as the inert gas in the model. The electronically excited states can be lumped into a single species, which results in a chemical mechanism consisting of only 3 species and 7 reactions.

Reaction	Formula	Туре	Δε (eV)
1	e+Ar=>e+Ar	Elastic	0
2	e+Ar=>e+Ars	Excitation	11.5
3	e+Ars=>e+Ar	Super elastic	-11.5
4	e+Ar=>2e+Ar+	Ionization	15.8
5	e+Ars=>2e+Ar+	Ionization	4.24
6	Ars+Ars=>e+Ar+Ar+	Penning ionization	
7	Ars+Ar=>Ar+Ar	Metastable quenching	

Table 1. List of volumetric plasma chemical reactions considered

't' that varies from 1.05mm to 3.65mm

DEVELOPMENT WORK: Based on the simulation results, hollow cathode has been fabricated with optimized aperture wall thickness and other geometrical parameters.

Figure 5. Fabricated hollow cathode isometric view CONCLUSIONS:

Figure 6. Fabricated hollow cathode top view

 With increase in wall thickness from 1.05mm to 3.65mm the hollow cathode phase gets delayed by 58% while the value of peak current in Hollow cathode phase reduced by 60%.

Figure 1. simulation model of hollow cathode in single gap Pseudospark configuration

RESULTS: It is observed that :

 With the change in aperture wall thickness, the change in field penetration inside the hollow cathode (at T= 51 ns) is as shown in figure 2 and 3.

- The duration of Hollow cathode phase increases by 55% and the maximum beam current reduced by 33%.
- The hollow cathode with optimized parameter, capable of producing high current density and suitable for sub-THz generation has been fabricated.

REFERENCES:

- 1. N. Kumar, D. K. Pal, R. P. Lamba, U. N. Pal, and R. Prakash, "Analysis of geometrical design parameters for high-energy and high-current density pseudospark-sourced electron beam emission," IEEE Trans. Electron Devices, vol. 64, pp. 2688–2693, 2017.
- N. Kumar, A. S. Jadon, P. Shukla, U. N. Pal, and R. Prakash, "Analysis of experimental results on pseudospark discharge-based electron beams with simulation model," IEEE Trans. Plasma Sci., vol. 45, pp. 405–411, 2017.
- 3. G. X. Shu, H. Yin, L. Zhang, J. P. Zhao, G. Liu, A. D. R. Phelps, A. W. Cross, and W. He, "Demonstration of a Planar W-band, kW-level Extended Interaction Oscillator Based on a Pseudospark-sourced Sheet Electron Beam," IEEE Electron Device Lett., vol. 39, pp. 432-435, 2018.

Excerpt from the Proceedings of the 2019 COMSOL Conference in Bangalore