# Simulation Study of Electron Beam Profile Near the Aperture of Hollow Cathode for High Current Density Electron Beam Generation Using COMSOL®

N. Gurjar<sup>1</sup>, S. Kumari<sup>1</sup>, K Singhal<sup>1</sup>, S Jain & N Kumar<sup>1</sup>

1. CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India

# **INTRODUCTION:**

- Sheet electron beam source is highly useful for generation of high current density electron beam as required for high power sub-THz radiation source
- The dimension of sheet electron beam source plays a major role in efficient sheet electron beam generation
- Optimization study of sheet electron beam source for different aperture shape and size has been performed



**DEVELOPMENT WORK**: Based on the simulation results, electron beam adapter regions have been fabricated where circular aperture has been down



Figure 1. (a) Elliptical, (b) Circular and (d) Rectangular electron beam

# **COMPUTATIONAL METHODS**:

Charged Particle tracing interface and Electrostatic interfaces have been used for the simulations. *Charged Particle Tracing interface:* 

The Charged Particle Tracing (cpt) interface has been used to model charged particle orbits under the

### tapered to sheet aperture.



(a) (b) (c)
 Figure 2. (a) Front view, (b) Rear view of adapter region and (c) adapter region on cut view on two different plates

- Dimensions for the sheet beam's aperture have been chosen based on the optimization results of hollow cathode geometry[4].
- Optimization study has been performed using COMSOL Multiphysics<sup>®</sup>



influence of electromagnetic forces. The physics interface solves the equation of motion for charged particles.

A Newtonian formulation has been used therefore, the particle position is computed using Newton's second law:

 $\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{m}_{\mathrm{p}}\mathbf{v}) = \mathbf{F}$ 

where  $m_p$  is the particle mass (SI unit: kg), v is the particle velocity (SI unit: m/s), and F is the total force exerted on the particle (SI unit: N).

# **Electrostatics interface:**

The physics interface solves Gauss' Law for the electric field using the scalar electric potential as the dependent variable.

**RESULTS:** The current density obtained for the different shapes of apertures as per the different shapes of the electron beam is as shown in table 1.



#### Figure 3. Comparison of voltage with time for different aspect ratios CONCLUSIONS

**Figure 4.** Comparison of current with time for different aspect ratios

- The sheet aperture was found to have the highest current density followed by the elliptical aperture and the cylindrical aperture has the lowest current density.
- The sheet electron beam source is capable of

| Type of beam    | Current Density<br>(A/cm <sup>2</sup> ) |
|-----------------|-----------------------------------------|
| Circular beam   | 134                                     |
| Elliptical beam | 381                                     |
| Sheet beam      | 410                                     |

**Table 1.** Comparison of current density for different shapes of electron

 beam

producing highest current density and suitable for sub-THz generation

#### **REFERENCES**:

1. G. X. Shu, H. Yin, L. Zhang, J. P. Zhao, G. Liu, A. D. R. Phelps, A. W. Cross, and W. He, "Demonstration of a Planar W-band, kW-level Extended Interaction Oscillator Based on a Pseudospark-sourced Sheet Electron Beam," IEEE Electron Device Lett., vol. 39, pp. 432-435, 2018, DOI. <u>10.1109/LED.2018.2794469</u>.

2. N. Kumar, R. P. Lamba, A. M. Hossain, U. N. Pal, A. D. R. Phelps, and R. Prakash, "A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator," Appl. Phys. Lett., vol. 111, p. 213502, 2017, DOI. <u>10.1063/1.5004227</u>.

3. Particle Tracing Module User's Guide, COMSOL 4.3, <u>www.comsol.co.in</u>.

4. "Design approach for a miniaturized pseudospark based high current density sheet electron beam source", Nikita Gurjar, Afaque M. Hossain, Rishu Singh, R. K. Sharma, V. P. Anitha, Raj Singh and Niraj Kumar, doi. 10.1109/TED.2019.2934229, IEEE Trans. Electron Devices.

#### Excerpt from the Proceedings of the 2019 COMSOL Conference in Bangalore