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Abstract 

 
This study investigates the effect of a uniform 

magnetic field on the lateral migration behavior of a 

ferrofluid droplet in a plane Poiseuille flow at arbitrary 

directions by means of numerical simulation. A 

numerical scheme called level set method in 

combination with laminar two phase flow under fluid 

flow module is used to solve the flow field both inside 

and outside of the droplet, while level set method is 

required to track the dynamic motion of the droplet 

interface which is suspended in another immiscible 

medium. A parabolic flow is generated by means of a 

pressure gradient. Magnetic field both inside and 

outside of the droplet is simulated using the AC/DC 

module, and it is coupled to the flow domain using the 

volume force feature under laminar flow module. We 

found that at a low droplet Reynolds number (𝑅𝑒𝑑 ≤
0.05), the magnetic field direction can effectively 

manipulate the final equilibrium position of the droplet 

along a channel. Keeping the viscosity ratio fixed (i.e., 

𝜆 = 1), at 𝛼 = 0°, the droplet finds its equilibrium 

position closer to the bottom wall, while at 𝛼 = 45°and 

90° the droplet settles closer towards the channel 

center. Also, at a steady state the droplet is found to 

align itself towards the direction of the magnetic field.   

 

1. Introduction 

 
Dispersion of droplets in another immiscible fluid is 

important in a number of industrial applications that 

deal with natural and synthetic products, including 

food products, drugs, and milk[1], [2]. Dispersion is 

also important in a variety of technological processes 

that involve liquid-liquid extraction[3], [4] where 

phase separation is crucial to the purification of the 

product, such as separation of water from crude oil and 

separation of glycerol from bio-diesel[5]. 

 

A single droplet in a pressure-driven flow serves as an 

excellent model problem to investigate the lateral 

migration behavior of droplets and can provide 

fundamental insights to more complex phenomenon 

that involves suspension of multiple droplets, e.g., 

transport of emulsions through porous media[6], [7]. 

In the existing literature, numerous theoretical[8]–

[10], experimental[11], and numerical studies[12] 

have been carried out to investigate the migration 

behavior of droplets in shear flows. 

 

In addition to using viscous shear force, phase 

separation can be enhanced by applying external force 

fields, such as magnetic fields which provide an 

additional way of manipulating the shape of a 

ferrofluid droplet[13], [14]. In order to use magnetic 

manipulation, either the droplet or the suspending 

medium needs to be a ferrofluid – a dispersion of 

magnetic nanoparticles (diameter typically around 10 

nm and volume fraction about 5%). Multiphase 

ferrofluid droplets have notable biomedical 

applications, such as treatment of retinal 

detachment[15], due to their ability to be delivered to 

a specific site with the help of proper manipulation of 

a magnetic field. A thorough investigation on the 

deformation and orientation of a ferrofluid droplet 

under uniform magnetic fields has been carried out in 

our recent work[16]. 

 

Until now, only a few have studied the lateral 

migration behavior of a ferrofluid droplet in a 

Poiseuille flow under the influence of a uniform 

magnetic field. Recently, Zhang et al.[17] 

experimentally investigated the effects of magnetic 

field strength, direction, and interfacial tension on the 

lateral migration mechanism of a ferrofluid droplet. 

One significant advantage of using the magnetic fields 

in compared to electric fields is that magnetic field can 

be applied at arbitrary directions with ease, while the 

direction of electric fields is often limited by the 

placement of electrodes.  

 

By using two-dimensional numerical simulations, this 

paper investigates the lateral migration behavior of a 

ferrofluid droplet in a plane Poiseuille flow under a 

uniform magnetic field at arbitrary directions. For 

computational efficiency, we have chosen to use 2D 

simulations in order to study a wide range of parameter 

space i.e. capillary number, magnetic bond number, 

and magnetic field direction. Our numerical 

simulation, built with commercial FEM solver, models 

the dynamic deformation of droplet interface by using 
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the level-set method and coupling the magnetic and 

flow fields. 

 

The remainder of the paper is organized as follows: in 

section 2, the mathematical model and numerical 

method with COMSOL settings are described. In 

section 3, we present the lateral migration behavior of 

the droplet in a plane Poiseuille flow without the 

presence of any external forces and validate our results 

against the existing theories in the literature. We then 

examine the effect of magnetic field directions on the 

trajectory of lateral migration of the droplet in a plane 

Poiseuille flow. Finally, we conclude our major 

findings in section 4.  

 

2. Numerical Simulation Method 

 
2.1 Level set method 

 
In our model, we have used the conservative level set 

method to track the dynamic evolution of the interface 

between the droplet and suspending medium. The 

level set function , an auxiliary scalar function, 

represents different fluid phases which has a value of 

zero in one domain and 1 in another domain. The value 

of  varies smoothly between 0 and 1 across the 

interface, and  = 0.5 defines the position of the 

interface. The level set function  is advected by the 

velocity field[18]: 
d

dt
+ (𝐮) =  𝛾 ( −  (1 − )

 

| |
) (1) 

where u, γ, and  determine the velocity field, amount 

of re-initialization, and thickness of the interface, 

respectively. The terms on the left hand side of the 

equation represent the motion of the interface, while 

the terms on the right hand side are required for 

numerical stability. The level set function  can also 

be used to find the unit normal to the interface n which 

is given by: 

𝒏 =


||
 (2) 

With the level set method, the two immiscible fluids 

are treated as a single phase flow but the material 

properties vary according to the level set value. Here, 

a linear average is used to calculate the density (), 

dynamic viscosity (), magnetic permeability (), and 

magnetic susceptibility () which are related to  

through the following equations: 

𝜌 =  𝜌𝑐 + (𝜌𝑑 − 𝜌𝑐), 𝜂 =  𝜂𝑐 + (𝜂𝑑 − 𝜂𝑐)𝜙 

𝜇 =  𝜇𝑐 + (𝜇𝑑 − 𝜇𝑐)𝜙, 𝜒 =  𝜒𝑐 + (𝜒𝑑 − 𝜒𝑐)𝜙 

where subscripts c and d represent the continuous and 

droplet phase respectively. 

 

2.2 Governing Equations 

 

The motion of an incompressible, immiscible 

ferrofluid droplet in another incompressible, 

immiscible medium under the effect of a uniform 

magnetic field is governed by the following continuity 

and momentum equations: 

∇ ∙ 𝐮 = 0 (3) 

𝜌
D𝐮

Dt
=  −∇𝑝 + ∇ ∙ 𝜏 + F𝜎 + F𝑚 (4) 

where, 
𝐷𝐮

𝐷𝑡
  represents the total derivative of the 

velocity field u. The right hand side of the equation (4) 

represents the force terms due to pressure, viscosity, 

surface tension (F𝜎), and magnetic field (F𝑚), 

respectively.  The viscous stress tensor 𝜏 can be 

expressed as: 𝜏 =  [𝜂(∇𝐮 + (∇𝐮)𝑇)]. The surface 

tension force F𝜎 can be defined by: 

𝐅𝜎 = ∇ ∙ [𝜎{𝐈 + (−𝐧𝐧𝑇)}𝛿] (5) 

where,  is the surface tension coefficient, I is identity 

matrix,  is the Dirac delta function, and n is the unit 

normal to the interface which can be calculated using 

equation (2). The Dirac delta function 𝛿 can also be 

approximated using the level set function as: 

𝛿 = 6|𝜙(1 − 𝜙)||∇𝜙| (6) 

Assuming linear and homogeneous material 

properties, the different magnetic properties i.e., 

magnetic induction B, magnetization M, and magnetic 

field H can be related using Maxwell magneto-static 

relationship through the following equations: 

𝐁 = 0,𝐇 = 0, 𝐌 =  𝐇 (7) 

𝐁 =  𝜇0(𝐇 + 𝐌) = 𝜇0(1 + 𝜒)𝐇 (8)
where  𝜇0 is the permeability of vacuum which is equal 

to 4𝜋 × 10−7 𝑁/𝐴2. A scalar potential  can be 

defined to satisfy the curl-free H i.e., 𝐻 =  −∇ which 

can be written as: 

∇ ∙ (𝜇∇) = 0 (9) 

Additionally, the total magnetic force can be 

calculated using the magnetic stress tensors as: 

𝐅m =  ∇ ∙ 𝛕m = ∇ ∙ (μ𝐇𝐇T −
μ

2
𝐻2𝐈) (10) 

where, 𝛕m is the magnetic stress tensor for the applied 

magnetic field, H = |H| is the magnitude of the 

magnetic field, and I is the second order identity 

tensor. The magnetic insulation on both the left and 

right walls are satisfied through the following 

equation: 

𝐧 ∙ 𝐁 = 0 (11) 

We introduced some dimensionless groups to reduce 

the number of variables and observe which 

dimensionless groups affect the droplet dynamics 

most. The dimensionless groups are defined as: 

𝑅𝑒𝑑 =  
𝜌𝑐𝑅0

2𝛾̇𝑎

𝜂𝑐

 (12) 

Ca =  
𝜂𝑐𝑅0𝛾̇𝑎

𝜎
 (13) 

Bom =
𝑅0𝜇0𝐻0

2

2𝜎
 (14) 
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where, 𝑅𝑒𝑑, Ca, and Bom represent droplet Reynolds 

number, average Capillary number, and Magnetic 

bond number, respectively. The parameter 𝛾̇𝑎 can be 

defined as 
2𝑢𝑎

𝐻𝑑
 where 𝑢𝑎 is the average flow velocity in 

the domain. 

 

2.3 Schematic of numerical model 

 

Fig. 1 demonstrates the schematic illustration of a 

ferrofluid droplet suspended in another fluid medium 

in a Poiseuille flow under the application of a uniform 

magnetic field, 𝐇0. In this case, the magnetic 

susceptibility of the ferrofluid droplet is considered as 

0.25 (i.e. 𝜒𝑑 = 0.25) while it is considered zero (i.e. 

𝜒𝑐 = 0) for the suspending non-magnetic fluid. The 

subscripts c and d represent the droplet and continuous 

phases, respectively. The viscosity and density of both  

Figure 1. Schematic illustration of a ferrofluid droplet 

suspended in another medium in a Poiseuille flow under the 

application of a uniform magnetic field, 𝐇0. 

 

the phases are considered equal to each other (i.e., 

𝜂𝑐 =  𝜂𝑑 and 𝜌𝑐 = 𝜌𝑑). Initially, the droplet with a 

radius of 75 m was placed 80 m below the center of 

the domain and far away from the inlet to ignore the 

entrance effect. The velocity profile at the inlet can be 

defined by 𝑢 =  𝑢𝑚(1 − 4𝑌∗2
) where 𝑢𝑚 is the 

maximum velocity in the domain. 𝑌∗ is a non-

dimensional variable which denotes the relative 

position of the droplet along y-axis of the channel, and 

this is scaled by the height of the domain 𝐻𝑑 (i.e., 𝑌∗ =
𝑦

𝐻𝑑
). The average velocity at the inlet is taken as 50 

mm/s. A no-slip boundary condition is applied to both 

the top and bottom walls. A uniform magnetic 

field, 𝐇0 was applied at arbitrary directions which is 

denoted by angle, . The deformation of the droplet is 

found out using dimensions L and B which are the 

lengths along the major and minor axes of the droplet, 

respectively. Also, the orientation angle  is defined as 

the angle between the positive x-axis and major axis 

of the droplet when the droplet undergoes deformation 

under the effect of both flow and magnetic fields.  

2.4 COMSOL Settings 

 

Two phase laminar flow level set method in 

combination of transient with phase initialization 

feature is used to solve the flow domain and to track 

the deformable interface of the droplet. A parabolic 

velocity profile at the inlet is generated using the inlet 

feature with an average velocity of 50 mm/s. No-slip 

boundary condition is applied to both the top and 

bottom walls using the wall feature. The value of level 

set function  is assigned as 1 and 0 for the droplet 

phase and continuous phases, respectively. The 

interface of the droplet is defined using initial interface 

condition. The re-initialization parameter 𝛾 is equal to 

the maximum magnitude of the velocity in the flow 

domain and interface thickness   is of the order as the 

same size of the mesh elements.  Additionally, a 

magnetic field is applied to the flow domain and 

solved simultaneously using Magnetic fields, no 

currents interface from AC/DC module. Keeping the 

magnetic field strength fixed (i.e., 𝐇0 = 50000 A/m), 

the magnetic field is applied along different arbitrary 

directions using the parametric sweep feature to 

investigate the trajectory of lateral migration of the 

ferrofluid droplet. For creating the mesh, we used free 

triangular elements in the computational domain. 

PARDISO solver with nested dissection multithread 

algorithm is used to solve our computational model. 

 

 

3. Results and Discussions 

 
3.1 Droplet migration in a Poiseuille flow 

 

Before moving on to our intended study, we validated 

our model by comparing our results against the 

existing theories in the literature. The most thorough 

theoretical analysis on droplet migration behavior in a 

two-dimensional Poiseuille flow is given by Chan and 

Leal[19] who considered the effect of the deformed 

shape of the droplet as a critical factor on the droplet 

trajectory motion in a uni-directional shear flow. Two 

different hydrodynamic interactions are mainly 

responsible for droplet migration. First is the 

interaction between the deformed drop and the bottom 

wall which gradually decreases as the distance from 

the bottom wall increases, and this interaction causes 

the droplet to migrate away from the bottom wall. 

Second is the interaction between the deformed drop 

and the flow field, which vanishes in a simple shear 

flow but plays an important role in the quadratic flow 

field[20]. Chan and Leal[19] also mentioned that the 

migration behavior due to the presence of the second 

type of interaction is essentially dependent on the 

viscosity ratios. When 𝜆 < 0.5 and 𝜆 > 10, the droplet 

migrates towards the centerline to the channel since in 
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this case, both types of interactions take place in the 

same direction. Conversely, for intermediate values of 

viscosity ratios (i.e., 0.5< 𝜆 < 10), the interactions act 

in opposite directions resulting in an equilibrium 

position at a position somewhere between the bottom 

wall and center of the channel due to the combined 

effect of these forces. The equilibrium position where 

the two interaction forces become equal to each other 

also depends on the relative size of the droplet[20]. 

 

Figure 2 represents the lateral migration of a droplet at 

a viscosity ratio equal to 1 (i.e., 𝜆 = 1). It can be seen 

that the droplet settles down approximately 19 m 

below the center of the channel which also takes 

considerable amount of time to reach the equilibrium 

position. This numerical result qualitatively agrees 

with the theory given by Chan and Leal. 

 

 
 

Figure 2. Lateral migration of a ferrofluid droplet at 𝜆 = 1 

and 𝐵𝑜𝑚 = 0. 

 
3.2 Effect of magnetic field direction on the lateral 

migration behavior of droplet 

 

When a magnetic field is applied to a ferrofluid droplet 

suspended in Poiseuille flow, the droplet deforms even 

more due to the additional effect of magnetic field 

strength on the droplet interface[16]. Here, we 

investigate the effect of magnetic field strength on the 

lateral migration behavior of the droplet at arbitrary 

directions. In this study, the droplet Reynolds number 

is considered as 𝑹𝒆𝒅 = 0.03. 

 

Figure 3 shows the effect of different magnetic field 

directions on the migration behavior of the droplet. In 

this case, some representative 𝜶 are chosen for better 

illustration of the results. From Fig. 3 we can see that 

applying a uniform magnetic field from different 

arbitrary directions results in different equilibrium 

positions along the channel relatively in a shorter 

period of time. Also, the droplet follows different 

trajectories before reaching the final equilibrium 

position. 

 

 
 
Figure 3. Effect of different magnetic field directions on the 

migration behavior of the droplet at 𝑅𝑒𝑑 = 0.03, 𝜆 = 1,  and 

𝐵𝑜𝑚 = 8.72. 
 

Figure 4 shows the steady state velocity, magnetic 

field profiles, and equilibrium droplet shapes at 𝑅𝑒𝑑 =
0.03, 𝜆 = 1,  and 𝐵𝑜𝑚 = 8.72.  It can be seen that the 

droplet undergoes deformation and orients itself along 

the direction of the magnetic field. At 𝛼 =  90°, the 

droplet shape is found to be symmetric with respect to 

the x-axis which in turn aids the droplet to settle at the 

center of the channel. On the other hand, at 𝛼 =
 0° and 45°, due to asymmetry in the shape of the 

droplet, the droplet experiences different 

hydrodynamic interactions along the interface of the 

droplet, which force the droplet to settle at a position 

somewhere between the center and bottom wall of the 

channel. The flow field also becomes more distorted 

as the droplet tends to further align itself in the vertical 

direction to conform to the droplet shape. From the 

magnetic field profiles, it can be seen that the droplet 

experiences maximum magnetic field strength along 

the direction the magnetic field is applied, while the 

strength is least in magnitude in the other orthogonal 

direction. The magnetic field is also uniform both 

inside and far outside the droplet. Additionally, the 

magnetic field lines are parallel to each other; 

however, they are slightly deflected at the interface of 

the droplet due to the change in the magnetic 

susceptibility at the interface. Therefore, it can be 

concluded that the different droplet shapes and their 

alignment with the flow field along with 

hydrodynamic interactions play a crucial role in the 

trajectory of the lateral migration and the final 

equilibrium position. 
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𝛼 = 0° 

 
𝛼 = 45° 

 
𝛼 = 90° 

 

 

Figure 4. Steady state velocity, magnetic field profiles, and 

equilibrium droplet shapes at 𝑅𝑒𝑑 = 0.03, 𝜆 = 1,  and 

𝐵𝑜𝑚 = 8.72.   
 

4. Conclusions 
 

The influence of a uniform magnetic field on the 

lateral migration behavior of a ferrofluid droplet in a 

plane Poiseuille flow is systematically studied in this 

paper. In the absence of any external forces, at 𝛌 = 𝟏, 
the droplet finds its equilibrium position at a location 

approximately 19 m below the center of the channel. 

Applying a magnetic field along arbitrary directions 

results in different equilibrium positions along the 

channel due to disparate alignments of the droplet with 

the flow field. At 𝛼 =  0°, the droplet is found to be 

closer to the bottom wall, while at 𝛼 =  45° the droplet 

settles closer to the center, and at 𝛼 = 90°, the droplet 

finds its equilibrium position exactly at the center of 

the channel. 
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