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INTRODUCTION:

 Power Transformer are the most crucial element in power system network

1 Protective systems are available to address the abnormality
= Avoid relay mis-operation

= Maintain reliability

4 Inner winding faults produce minor current and are difficult to detect

» Turn-to-turn winding fault (T2T)
» Turn-to-ground winding fault (T2G)

d Transformer model is the key to study and analyze the behavior




OBJECTIVE:

1 Accurate representation of Transformer Winding fault

1 Able to account minor effects

 Overcome simplification from Analytical Approaches

d Maintain user-friendly version of model for study and analysis

d EMTP-ATP Implementation worthy

building Inverse EMTP-ATP

MATLAB script for
inductance library

‘H ATPDraw
Inductance (H) or reactance (ohms)

Characteristics curves * |ib file




Significance of FEA based approach

Comparison of analytical approaches
to estimate the inductance vs FEA
method
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Method to estimate leakage inductances:

Case A: Healthy Transformer

i.) Zps

ii.) Zpt

iii.) Zst

Leakage Analytical COMSOL
Reactance formula based (FEA)
X, 21.2918 21.0572
X4 38.5627 38.1231
X.q 11.7180 11.0950
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Inductance calculation from simulation

Self and Mutual Inductance values

2
M12

Lself 2

Li; = Lgeif1 —

One coil-pair at a time
Coil 1 (source) = Current excitation (rated)

Coil 2 (shorted) = Voltage excitation of OV

!

Mf.L_ 1 3 (H) [mutual inductances b/w 1 & 3]
mf.LCoil_3 (H) [Coil inductances]

Magnetic Solution Method

L. — 2+ Wy  2+mf.intW,
127 12 7 mf.ICoil 12

One coil-pair at a time

Colil 1 = Current excitation (11)

Coll 2 = Current excitation (12)
11 x N1 =12 x N2 (AT balance)

!

mf.Wm (J) [Magnetic Energy Density]

(user defined regions only)

or

mf.intWm (J) [Total Magnetic energy]

(covers all regions) g




Winding Fault simulations

Coil-2

Conceptual overview of T2T and T2G

fault modeling on common winding
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3 coil segments with coil
2 indicating faulted turns

FC 2 (Faulted)

Challenge: To model for any range of fault progression
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Derive Characteristic curves

Parametric Sweep approach:
 Magnetic solution method

« T2TorT2G

« Fault position progression from bottom to top

* Faster output

* Ability to post-process multiple simulation cases into a table

4 () Global Definitions

Pi Parameters 1
£ Common model inputs 1

Label: Parameters 1

¥ Parameters

Materials -
4 i Component 1 fcomp 1) Mame  Expression Value Description
= Definitions C_height | 1.496[m] 1,496 m Common winding cail h..
Geometry 1 FaultPos |30 30 FaultPosition
Materials T2TFault |1 1
M Magnetic Fields (mf) C3_height | (FaultP: )*C_heig... | 04488 m
A Mesh 1 C2_height | (T2TFaul *C_height | 0.0033694 m
e Study 1 Cl_height | C_height-C2_height-C... | 1.0438 m
4~ Study 2 e au aa
7 Ne 44 444
Parametric Sweep Nd 140 140
Step 1: Stationary Nel Ne-Nea-Nc3 310
[Tr= Solver Configurations Ne2 TTFault 7
£ Job Configurations Ne3 FaultPos/100)"... | 133
4 [[E Results Itest -100 A
Data Sets Ic1 -ke1"ltest*Ntest/Ncl 0A
Views Ic2 -kc2%Itest*Ntest/Nc2 0A
- Derived Values I3 -ke3*ltest*Ntest/Nc3 075188 A
[l TotalEnergy kel 0 0
[l TotalEnergyWithoutCore ke2 0 0
Tables kel ! 1
Magnetic Flux Density Morm (mf) Ntest FNEZ 1
Magnetic Flux Density Norm, Revolved Geometny :EI E g

Magnetic Flux Density Norm (mf) 1
Magnetic Flux Density Norm, Revolved Geometry
Xsclc2e3_perturn

Ksclc2e3_ohms

Xclox_perTurn

Xclex_ohms

Xsclc2e3_perturn 1

HKexd_ohms

Kexd_PerTurn

Xsclc2c3_perturn 1.1

Export

Reports

=]
E
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=
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v
v
e
~%
v
v
~%

Settings  Properties

= Compute (& Update Solution
Label: Parametric Sweep
Study Settings

Sweep type: All combinations

1Y
Parameter name Parameter value list
FaultPos (FaultP = || 13510203040 50607020

T2TFault 1359132244

Parameter unit
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Reactance (Ohms)

Reactance (Ohms)

Leakage reactance between coil segments: S, C1,C2,C3andD
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Leakage inductances (1-turn basis) between coil segments: S, C1,C2,C3 andD

oa,

Inductance per turn (micro Henry)
Inductance per turn (Micro Henry)

T2T fault on Common
winding

Inductance per turn (Micro Henry)

0 20 40 60 80
Fault Position

 Thesecurve arereducedto set of equation by fitting

and supplied ad input to MATLAB codes
10
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Simulation Result in ATP:

Expected [A] Simulation [A]
Primary (A-ph) 3717.7 3710.29
Secondary (A-ph) 237.0 240.65
Tertiary (A-ph) 3121.6 3001.9
Primary (B-ph) 247.5 251.00
Secondary (B-ph) 644.6 644.22
Tertiary (B-ph) 3121.6 3001.8

Conclusion:

= Accurately estimated the values of leakage reactance for healthy and faulted winding
transformer

= Characteristic curve is exported or simplified by fitting the values

= The coefficients are then supplied to developed matlab code to generate library for
near-real time

= Enhanced the ATP model for studying the Transformer protection
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