Study of 3D focused droplet generation in a 2D flow focusing microfluidic geometry

A. Mohan¹, P. Gupta², T. Saiyed², A. Prabhakar¹

1. Indian Institute of Technology Madras, TN, India

2. Centre for Cellular and Molecular Platforms, Bangalore KN, India

INTRODUCTION:

- We study the water in oil droplets formation inside a 2D microfluidic flow focusing geometry.
- Generation of monodisperse droplets of two
 immiscible fluids

RESULTS:

 Material properties of oil and water were given as shown in table

- Figure 1. . Integrated optical fibres in microfluidic device for optical sensing of droplets
- The optical sensing by coupling fiber optics.
- Optical fiber diameter (130 μm) to match the microfluidic channel height.
- Reduced channel cross section improves the through put and efficiency of droplet.
- Height of the channel can be increased once the

Figure 3. Droplet breakup

 Table 1. Fluid properties used

• First the disperse phase meets the continuous phase and forms a convex shape governed by the surface tension of the fluid.

Figure 5. Droplet evolution with time

Figure 5. Increasing sheath flow rate by keeping the sample flowrate at 0.5 s

COMPUTATIONAL METHODS:

 Computational Fluid Dynamics (CFD) simulation using the Laminar Two-Phase Flow, Phase Field method in COMSOL Multiphysics[®].

Figure 2. Flow focusing micro channel geometry designed for droplet generation modelled in 3D. (a)Device geometry with lower channel cross sections (b) Height of the fluidic channel increased from 60 μ m to 130 μ m.

Figure 5. Propagation of generated droplets in the fluid channel with increased height (from 60 μm to $~130~\mu m$)

- Lower water flow rate brings the droplet breakup close to the flow focussing region.
- Droplets starts aligning to the centre within a distance of 100 μm from the flow focussing point.
- Not much variation observed in this distance across different sample(water) flowrates.

CONCLUSIONS:

- the Laminar Two-Phase Flow, Phase Field module was selected to perform the simulation.
- Phase field method to study the interfacial motion of the multiphase flow.
- To observe the geometric evolution of the fluidic interface.
- Also considered the a laminar flow behaviour in the micro channels

- Successfully simulated a micro fluidic droplet generator.
- Analysed the formation and evolution of the successive droplets.
- Understood the dependence of flow rate ratio of the two phases.
- Finally the droplets observed to be getting aligned to the centre of the fluidic channel within a distance of 100 μ m.