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Introduction
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Energy Harvesting (EH) – Unconventional 
Generation of Electrical Energy
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Classification of Kinetic Harvester Systems
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Classical Concepts of Resonant Kinetic Energy 
Harvesting (KEH) – Nonlinear Spring 

	 Ω cosΩ	
′

	 	 	

2	 	

Transducer

Excitation

Mechanical Oscillator

	 	

	

	



7

Improvement of Resonance Bandwidth

A B C
A B

A: Nonlinear Softening          B: Linear         C: Nonlinear Hardening

C



8

New Class of KEH System
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Patent “Device having an arrangement of magnets” 
WO/2009/019001 / PCT/EP2008/006459
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2D Permanent Magnet Spring Model I, II
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2D Permanent Magnet Spring Model III

Current ring Ring PM Disk PM
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Exemplarily Stator-, Rotor-PM Configuration
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Tests of a Variety of Stator-, Rotor-PM Configurations
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Maximizing of Asymmetric Torque
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Asymmetric Torque (Variant axR3S3sl)
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Asymmetric Torque (Variant axR2S3ml)
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Mechanical Energy 
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Damping Lateral Mechanical Energy

	 ≅ 	
Note: Over one revolution assuming harmonic movement

If the produced energy ( is damped by a factor 4.1x…

The produced energy ( , e.g. force , can be damped! 
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Mathematical-Physical Model (Non-Resonant)
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Dynamical Simulations (Non-resonant)
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Mathematical-Physical Model (Resonant)
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Nonlinear Radial / Axial Stiffness Signals

Radial configuration (2D) Axial configuration (1D)
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Excerpt of Dynamical Simulations (Resonant)

1:1 Resonanz
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Conclusions and Outlook
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Conclusions
1) Phenomenological approach by investigating the feasibility of a patent 

like WO/2009/019001 / PCT/EP2008/006459

2) PMs with geometrical extension can do work

3) Where the energy comes from in the microcosm has not been identified 
in detail

4) PM-springs can be used as non-conservative fields, by clamping initial 
mechanical energy
a. and forcing 2DoF rotor trajectories via a cam in a closed loop (non-

resonant)
b. in an autoparametric 2DoF resonator (resonant) 

5) By emulating PMs with current loops, the question arises: what energy in 
the microcosm keeps the current constant ?
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Outlook

1) Simpler models are existing (currently IP claims are ongoing)
• Rotary-radial spring system
• Cogwheel coupled spring systems (and for instance also Tusi Couples)

2) Investigating this phenomenon in the microcosm – it might be useful to 
study carefully also new atom models like the one from R. Mills

3) Nullius in Verba – an open source experiment is indispensable!
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Thank you for your attention
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Backups
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Nonlinear Friction Model
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Cam-Based Harmonic Lateral Dynamics


