

Generation of Asymmetric Incommensurable **Torque Signals**

COMSOL

L. Kurmann^{1,2}, P. Grubert² ¹IMTEK, University of Freiburg, Germany ²University of Applied Sciences and Arts Northwestern Switzerland, School of Engineering, Switzerland

COMSOL Conference 2018 Lausanne, Switzerland

 $\mathbf{n}|_{\mathcal{U}}$

Agenda

- 1. Introduction
 - Motivation: Search of New Energy Harvesting Sources
 - Classical Kinetic Energy Harvester (KEH) Concepts
- 2. New Class of KEH System
 - Background
 - Setups
 - Verifications
 - Simulations
- 3. Conclusions and Outlook

Introduction

Energy Harvesting (EH) – Unconventional Generation of Electrical Energy

Classification of Kinetic Harvester Systems

Classical Concepts of Resonant Kinetic Energy Harvesting (KEH) – Nonlinear Spring

Improvement of Resonance Bandwidth

New Class of KEH System

Patent "Device having an arrangement of magnets" WO/2009/019001 / PCT/EP2008/006459

v , *	TU/e Technische Universiteit Eindhoven University of Technology		TU/e
Department of Electrical Engineering Electromischanics & Power Electronics Den Doleh 2, 5612 AZ Electronics P.O. Bio 513, 3600 MB Enchoven The Netherlands Internal address; Fux 0, 159 http://www.tue.ni/spail		Dutum Novumber 26th, 2016 Pajna 2 van 2	To enable furth of experiments motor is not co (e.g. battery, h density, nuclea experiments pr accurately reci
Date November 26th, 2016	Declaration		the volume of t amount of ener efficiency.
Gurreference	Herewith I – Ton Backx – declare that I have seen the permanent magnet based motor, developed and built by mr. Muammer Yildiz, running for a significant period of time driving a fan. The actual power delivered has not been registered during this demonstration.		Prof.dr.ir. Ton I
Subject Declaration	After the motor has been running for more than one hour with presence of several witnesses and recorded on video mr. Muammer Yildiz opened the motor completely to reveal to me its construction and the materials applied completely.		President Instit
(Tu/a)	The motor is built with well-ordered permanent magnets fixed in an aluminum based rolor and stator. Specially configured additional permanent magnets together with bars of magnetic material (iron) are used for control of the rotation speed and the power delivered by the motor. Some of the magnets have been fixed in disks made of plastic instead of aluminum. In the motor that was completely opened all permanent magnets are fixed both in the rotor and in the stator by means of bots. The positioning of these permanent magnets is very critical for the functioning and the performance of the motor. No other materials have been used in this motor. The motor does not have any space left for a hidden source of energy to supply the energy needed to keep the motor running. The motor furthermore does not contain any coils or antenna's. This motor is a very interesting device that deserves to be subject of		Dr. Jorge Dura Assistant profe Electrical Engli
The second start	Indiamental research to investigate the way it convertes to be subject of fundamental research to investigate the way it converts energy from an external source of energy to mechanical energy by means of well-structured configurations of permanent magnets.		
/			
here innovation starts		•	

Eindhoven University of Technology er development to application of the motor a next se

Technische Universiteit

needs to be done in which it will be proven that the nverting energy of a well-known source of energy drocarbons, other energy source with high energy r power source, ...) to mechanical energy. The set of oposed are experiments where the motor will deliver stered power during sufficiently long time that with he motor not publicly revealed cannot store the ray delivered even if conversion would be with 100%

Backx tute for Photonic Inter Taco \

Director Tendris Solutions by

2D Permanent Magnet Spring Model I, II

2D Permanent Magnet Spring Model III

Exemplarily Stator-, Rotor-PM Configuration

Tests of a Variety of Stator-, Rotor-PM Configurations

Maximizing of Asymmetric Torque

Asymmetric Torque (Variant axR3S3sl)

Asymmetric Torque (Variant axR2S3ml)

Mechanical Energy

$$\begin{split} \underbrace{\mu_{rad} = 0}_{\text{Min. friction}} & W_{\phi} = \int_{0}^{2\pi} (1 - \mu_{rad}) \tau(\phi) \, d\phi \cong 46.1 mJ \\ & W_{z} \cong \int_{0}^{2\pi} \mu_{ax} |F(\phi)| \, z_{R}(\phi) \, d\phi \cong 0 \\ \underbrace{\mu_{ax} = 1}_{\text{Max. friction}} & W_{t} \cong \int_{0}^{2\pi} \mu_{ax} |F(\phi)| r_{cam} \, d\phi = 234.6 mJ \\ & \cong F_{N} \end{split}$$

COMSOL

CONFERENCE

2018 LAUSANNE

REIBURG

Total energy: $W_{tot} = W_{\phi} - (W_z + W_t) = -188.4 mJ$ \iff $W_{mag} = \int \mathbf{F}_{mag} \cdot d\mathbf{l} \neq 0$

Damping Lateral Mechanical Energy

The produced energy $(W_z + W_t)$, e.g. force F_z , F_t can be damped!

 $F_{fcam} = \mu F_N \cong \mu F_Z$ Note: Over one revolution assuming harmonic movement

If the produced energy $(W_z + W_t)$ is damped by a factor 4.1x...

 $W_{\phi} > W_z + W_t$

Mathematical-Physical Model (Non-Resonant)

$$J_R \varphi'' + D_{\varphi} \varphi' + \varepsilon i = T_{mag} f_T(\varphi)$$
$$L_{coil1...5} i' + (R_{coil1...5} + R_{load}) i = \varepsilon \varphi$$

Dynamical Simulations (Non-resonant)

Mathematical-Physical Model (Resonant)

Nonlinear Radial / Axial Stiffness Signals

Excerpt of Dynamical Simulations (Resonant)

Conclusions and Outlook

Conclusions

- 1) Phenomenological approach by investigating the feasibility of a patent like WO/2009/019001 / PCT/EP2008/006459
- 2) PMs with geometrical extension can do work
- 3) Where the energy comes from in the microcosm has not been identified in detail
- 4) PM-springs can be used as non-conservative fields, by clamping initial mechanical energy
 - a. and forcing 2DoF rotor trajectories via a cam in a closed loop (non-resonant)
 - b. in an autoparametric 2DoF resonator (resonant)
- 5) By emulating PMs with current loops, the question arises: what energy in the microcosm keeps the current constant ?

Outlook

1) Simpler models are existing (currently IP claims are ongoing)

- Rotary-radial spring system
- Cogwheel coupled spring systems (and for instance also Tusi Couples)
- 2) Investigating this phenomenon in the microcosm it might be useful to study carefully also new atom models like the one from R. Mills
- 3) Nullius in Verba an open source experiment is indispensable!

Thank you for your attention

Backups

Nonlinear Friction Model

Cam-Based Harmonic Lateral Dynamics

