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Abstract: This work concerns the develop-
ment of a new direct parameter identification
procedure for a class of nonlinear reaction-
diffusion equations. We assume to know the
model equations with the exception of a set
of constant parameters, such as diffusivity or
reaction term parameters. Using the Finite
Element Method we are able to transform
the original partial differential equation into
a set of ordinary differential equations. A lin-
ear least squares (LS) method is then applied
to estimate the unknown parameters by us-
ing normal equations. With this approach we
reduce the effects of measurement errors and
computational time compared with a nonlin-
ear procedure.
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1 Introduction

Reaction-diffusion equations arise in many
physical processes, such as physiological, eco-
logical and social phenomena. Mathematical
modelling of such systems often involves the
estimation of the unknown parameters of the
equations in order to reproduce as well as pos-
sible the dynamics of the real processes. How-
ever, the application of a parameter estimation
process may involve nonlinear algorithms that
make difficult the system identification proce-
dures. Some effort in this direction has been
done by the author in [6], where a simplified
nonlinear two-step procedure is proposed and
in [3], where, to the purpose of identification,
a set of basis functions have been estimated.
The research reported herein concerns the
development of a new parameter estimation
procedure based on the finite element dis-
cretization of a class of nonlinear reaction-
diffusion equations. In this context, a linear
least square algorithm is applied to a reduced
system consisting on a set of ordinary differ-

ential equations resulting from the time-space
discretization (see [5] for the details on system
identification).

The paper is organized as follows: Section
2 is focused on the description of the math-
ematical models used in the work. Section
3 describes the parameter estimation proce-
dure. In Section 4 the use of Comsol Multi-
physics in the context of the present work is
explained. Section 5 presents the simulation
results in terms of the fitting performance. We
close in Section 6 with some final remarks and
suggestions for further research.

2 The Model

We assume that the dynamic of the system
is described by the following reaction-diffusion
equation:

∂u

∂t
−∇ · (σ∇u) = F (θ, u) in Ω, (1)

where σ is the diffusivity coefficient and
F (θ, u) =

∑Nd

m θmu
m. We suppose that Θ =

[σ, θ1, . . . , θNd
] is an unknown vector to be es-

timated. Moreover, we assume that equation
(1) is subject to suitable initial conditions and
appropriate Neumann boundary conditions:

n · (σ∇u) = 0 on ∂Ω, (2)

where n is the outward normal vector.
Using finite element method, equation (1) can
be transformed into a system of ordinary dif-
ferential equations (see [4] for a detailed de-
scription of the finite element method).
The first step consists with multiplying each
term by an arbitrary test function w ∈ H1(Ω)
to obtain the weak statement of the problem:(

∂v

∂t
, w

)
Ω

− (∇ (σ∇v) , w)Ω − (F,w)Ω = 0,

(3)
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where (·, ·)Ω is the usual L2(Ω) inner product:

(f, g)Ω =
∫

Ω

f(x)g(x)dΩ, ∀f, g ∈ L2(Ω).

(4)
Applying the divergence theorem and using
(2) we obtain:(

∂v

∂t
, w

)
Ω

+ (σ∇v,∇w)Ω− (F,w)Ω = 0. (5)

Let Vh be a finite dimensional sub-
space of H1(Ω) spanned by the functions{
φh1, . . . , φhNp

}
. Specifically, we consider

φhi, i = 1, . . . , Np as a piecewise polynomials
of degree 2 on a quasi uniform triangulation
ρh of Ω with size h.
We look for a finite element approximation vh

to the solution v of the weak formulation (5)
as a linear combination of the finite element
basis functions φi(x) with time-dependent co-
efficients Ui(t), namely:

vh(t, x) =
Np∑
i=1

Ui(t)φi(x). (6)

Substituting (6) into the weak form (5) and
letting the test functions w run through the
set of all basis functions {φi}

Np

i=1, we obtain the
following finite element discretization of (1):

L(U) = AU̇ +

(
σB −

Nd∑
m=1

θmMm(U)

)
U = 0,

(7)
where U = {Ui}

Np

i=1 and
A = (ai,j)Np

i,j=1, ai,j = (φi, φj)Ω,

B = (bi,j)Np

i,j=1, bi,j = (∇φi,∇φj)Ω,

Mm(U) = (µm
i,j)Np

i,j=1,

µm
i,j =

∫
Ω
φi

(∑Nd

k=1 Ukφk

)m−1

φjdΩ.

Equation (7) will be used for applying the pa-
rameter estimation procedure and to validate
the identified model through numerical simu-
lations.

3 Parameter Estimation

The parameter identification procedure is
based on the minimization of a cost function,
representing the mean square error between
simulated and experimental data:

Θ̂ = arg min
Θ

J(Θ, Û , Ū), (8)

where Ū is the vector of real measurements
that are assumed to be collected at each time
instant in each nodal point of the finite ele-
ment domain and Û is the vector of the model
simulation.
Integrating equation (7) over a time interval
∆t = [ti, ti+1], gives

U(ti+1)− U(ti)
∆t

= (9)

= A−1

∫ ti+1

ti

(
−σB +

Nd∑
i=1

θiMi(U(ti))

)
U(ti)dτ.

Considering Equation (9) for i = 1, . . . , T − 1,
we obtain a linear system of equations in the
variable Θ := (σ, θ1, . . . , θNd

)′ of the form

Y = W Θ, (10)

where

Y =
(
U(ti+1)− U(ti)

∆t

)
i=1,...T−1

(11)

and

W =
(
−A−1B

∫ ti+1

ti
U,

∫ ti+1

ti
A−1M1(U(ti))U(ti)dτ, . . . ,∫ ti+1

ti
A−1MNd

(U(ti))U(ti)dτ
)

i=1,...T−1
.

(12)
If we replace U by the measurements Ū , and
approximate the integrals in (9) by numerical
quadrature, equation (10) becomes

Y = W̃ Θ + e, (13)

where e is an error caused by noise and nu-
merical quadrature, and W̃ is the approximate
value of W .
We can now compute a least squares estimate
of Θ in (13) as:

ΘLS = (W̃ ′ W̃ )−1 W̃ ′Y. (14)

This method can be easily implemented in
Comsol Multiphysics as shown in the next Sec-
tion.



4 Use of COMSOL Multiphysics

The Comsol Multiphysics linearization of the
finite element model (7), used in the Newton
iteration, is:

D(U̇ − U̇0) +K(U − U0) = L(U0), (15)

where D = −∂L/∂U̇ and K = −∂L/∂U
are the mass and the stiffness matrices, re-
spectively (see the Comsol Multiphysics user’s
guide [2] for a detailed description).
Computing these matrices for system (7) leads
to:

D = −∂L/∂U̇ = −A,
K = −∂L/∂U = −σB +

∑Nd

m=1 θmmMm(U).
(16)

Note that, for different values of Θ :=
(σ, θ1, . . . , θNd

)′, we are able to obtain different
matrices Ks. In particular, we have:{

K = B, for Θ = (−1, 0, . . . , 0)′

K = Mm(U), for Θ(m+ 1) = 1
m ,

(17)
with m = 1, . . . , Nd.
This fact allows us to easily compute matrix
W in (12) by the Comsol Multiphysics com-
mand assemble [1].
Here is reported a piece of Comsol pseudocode:

fem.Theta(1)=-1;

[A,B] = assemble(fem,’Out’,{’D’ ’K’})

for t = 1 : T

for m = 1 : Nd

fem.Theta = 0;

fem.Theta(m+1) = 1/m;

Mm(m) = assemble(fem,’Out’,{’K’},’U’,UM(t));

end

end

where UM(t) is the vector of real measure-
ments at time t.
The model parameters can now be easily com-
puted by equation (3).

5 Simulation Results

In order to numerically validate the results,
we apply the method to a nonlinear model de-
scribing the distribution of a population in a
square domain. The spatio-temporal dynam-
ics is described by the following equation with
a nonlinear logistic equation:

∂u

∂t
−∇ · (σ∇u) = ru

(
1− u

k

)
in Ω. (18)

For the parameter identification problem, we
set Θ = (σ, r, r/k) and compute the finite ele-
ment model as in Sections 2 and 3.
The vector of real measurements Ū is ob-
tained by simulating the model in a domain
Ω = (10 × 10) with the following parameter
values:

Par. Value
σ 1e-2
r 1e-1
k 10

Table 1: Nominal parmeter values.

and a mesh consisting of 841 nodal points.
We test the parameter estimation procedure
by using equation (18) with different initial
conditions and mesh dimension. In particu-
lar, we use meshes consisting of and 81, 121
and 256 nodal points and the following initial
conditions:

u(x, y, 0) = x (19a)

u(x, y, 0) = sin
(π

2
x
)

+ a, (19b)

where a is a positive parameter introduced to
avoid negative values in the initial state. The
fitting performance is evalueted in terms of the
spatial mean square error between measure-
ments Ū and simulated data Û :

MSE(t) =
1
Np

Np∑
i=1

(
Ū(i, t)− Û(ΘLS , i, t)

Ū(i, t)

)2

.

(20)
Figures 1 and 2 report the obtained MSEs for
the considered cases.
As we can see, the model performs better us-
ing a finer mesh. However, the error remain
low also for coarser meshes. Tables 2 and 3 re-
port the values of the estimated parameters for
different Np and initial conditions (19a) and
(19b), respectively.

Par. Np = 81 Np = 121 Np = 256
σ 1.055e-2 0.998e-2 0.967e-2
r 0.983e-1 0.989e-1 0.995e-1
k 9.999 9.999 9.998

Table 2: Estimated parameter values for initial
condition (19a).



Par. Np = 81 Np = 121 Np = 256
σ 0.875e-2 0.934e-2 0.986e-2
r 0.999e-1 0.995e-1 0.999e-1
k 9.990 9.996 9.996

Table 3: Estimated parameter values for initial
condition (19b) .
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Figure 1: MSE between simulated and real
measurements data for different values of Np and

initial condition (19a).
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Figure 2: MSE between simulated and real
measurements data for different values of Np and

initial condition (19b).

6 Conclusion

This paper addresses the problem of esti-
mating the parameter of a class of nonlinear
reaction-diffusion equations. After a finite ele-
ment discretization of the model, a linear least

square method is applied to the resultant sys-
tem of ordinary differential equations in order
to retrieve the parameter values. The identi-
fication procedures are performed by consid-
ering two different initial conditions and three
mesh dimensions.
The use of Comsol Multiphysics command as-
semble plays a crucial role in finding the fem
matrices.
Finally, the fitting performances of the esti-
mated models are presented and evaluated in
terms of the spatial mean square error.
Future work will concern parameter sensitiv-
ity analysis with respect to different initial
conditions and mesh dimension. Furthermore,
a comparison with nonlinear methods will be
considered.
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