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Abstract

Electrochemical machining (ECM) is a non-conventional machining process that uses electrolysis
to precisely remove material at high rates. ECM has many advantages over conventional
machining: no tool wear, no induced mechanical or thermal stresses, high removal rates virtually
independent of material hardness or strength, and excellent surface finishes. However,
challenges can arise during the design of the tooling electrode when considering the influence of
electrolyte flow slots on the final shape of the anode workpiece. Through-tool flow slots can
often leave pips, or ridges, of excessive size on the anode because of the increased electrical
resistance under the slot areas. A model to predict the final machining surface in the presence of
gaps--electrolyte flow slots in the tooling electrode--is created using COMSOL Multiphysics®
finite element software. The electric currents and deformed geometry modules were used to
model the electrolyte in-between the two electrodes: a potential was applied to the anode and
the cathode was grounded. The electrolyte used was 4M NaCl, and conductivity values were
taken as 0.75 S/m. Tool feed rate, electrode gap size, and material electrochemical constants
were entered into the model, and workpiece recession rate was modeled as a function of the
resulting normal current density in accordance with Faraday's law of electrolysis. These results
were compared to aluminum samples electrochemically machined with various electrolyte flow
slot configurations. A profilometer was used to measure the ridge height on the samples and
overall surface roughness. Good agreement was shown between the modeled and experimental
ridge heights. Through the use of this model, it is possible to predict and more accurately design
electrolyte flow slots to meet final part tolerances and requirements.
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Figure 1: Electrochemical machining setup used during experimentation.
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Figure 2: Sample electrode design with diagonal electrolyte flow slot.
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Figure 3: Inital COMSOL model (time = 0) showing the normal current density distribution. The

cathode (tool) is top, the anode (workpiece) is bottom, and the electrolyte is center (modeled in
COMSOL).
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Figure 4: Machined workpiece surface at time = t, ridges can be seen in area underneath
electrolyte flow slot.



