
Coordination of Time-Dependent Simulation
Parameters Using the Application Builder in
COMSOL Multiphysics®

COMSOL Conference Boston, October 2024

Dr. Paul Belk*, Dr. Anna Harrington*

*Boston Scientific Corporation, Boston, MA

Boston Scientific Public – Public Release Authorized

Overview

• Time-dependent simulations are most interesting when external

factors change

• The simulation needs to be evaluated before and after each

change

• Simulator might not “notice” on its own

• Explicit evaluation required

• If the user is specifying changes, it can be hard for the designer to

anticipate them, even with events

• Even designers (Model Builder) can have trouble accounting for all

changes

• The App builder (using Java code) can do this automatically

• This is essential for app users… and very handy even for Model

designers

Boston Scientific Public – Public Release Authorized

Simple Example: Current Pulse

Anode Separator Cathode

Particle

Li-Ion Battery 1D +1 Model

Alternative Use Cases
• Boundary conditions

• Concentration

• Temperature

• Flow Rate

• Pressure

• Stress

• Material parameters

Boston Scientific Public – Public Release Authorized

Specify Time-Dependent Solver Settings

Boston Scientific Public – Public Release Authorized

Link Data Structures to UI

Model Builder Application Builder

Methods

Declarations

Piecewise function Table Object

Java Code

Boston Scientific Public – Public Release Authorized

Procedure

✓ Step 0: Create UI in App Builder to specify time-

dependent factors

✓ Step 1: Link data structures to UI

✓ Step 2: Specify Time Dependent Solver Settings

✓ Step 3: Comment Method Code

• Step 4: Record code to set up conditions

• Step 5: Record code to set up evaluation times

• Step 6: Modify Method Code

• Step 7: Fire and Forget

Method Code Structure

Boston Scientific Public – Public Release Authorized

Record Code to Set Up Conditions

Boston Scientific Public – Public Release Authorized

Record Code to Set Up Conditions

While Recording Code:
• Create Piecewise Function
• Set size of Transition zone
• Edit Start, End and Function Intervals

Boston Scientific Public – Public Release Authorized

Record Code to Set Up Conditions

Boston Scientific Public – Public Release Authorized

Record Code to Set Up Conditions

Boston Scientific Public – Public Release Authorized

Record Code to Set Up Evaluation Times

While Recording Code:
Edit Output times

Boston Scientific Public – Public Release Authorized

Record Code to Set Up Evaluation Times

Boston Scientific Public – Public Release Authorized

Method: Inputs

// Get data from pulse table == CUSTOM
// determine number of pieces in piecewise function.
int nPieces = 0;
double minDur = pulses[0][2]; // for transition times
for (int row = 0; row < matrixSize(pulses)[0]; ++row) {
nPieces += pulses[row][0]*2; // each row also has a recovery piece
if (pulses[row][2] < minDur) minDur = pulses[row][2];
if (pulses[row][3] < minDur) minDur = pulses[row][3];

}
int curPiece = 0;
double xTime = minDur/10; // set the transition time based on the shortest pulse

// for each piece (change) in the piecewise, we place two evaluation times
double[] times = new double[2*(nPieces)+4];

Boston Scientific Public – Public Release Authorized

Method: Modify Piecewise Function

// setup square pulse in piecewise function == RECORD
for (int pNum = 0; pNum < nPulses; ++pNum) {

// rising edge
times[nTime++] = pTime-xTime+firstPulse;
times[nTime++] = pTime+xTime+firstPulse;
model.component("comp1").func("pw1").setIndex("pieces", pTime, curPiece, StartTime);
pTime += duration;
model.component("comp1").func("pw1").setIndex("pieces", pTime, curPiece, EndTime);
model.component("comp1").func("pw1").setIndex("pieces", current, curPiece, Amplitude);

// falling edge
++curPiece;
times[nTime++] = pTime-xTime+firstPulse;
times[nTime++] = pTime+xTime+firstPulse;
model.component("comp1").func("pw1").setIndex("pieces", pTime, curPiece, StartTime);
pTime += (period-duration);
model.component("comp1").func("pw1").setIndex("pieces", pTime, curPiece, EndTime);
model.component("comp1").func("pw1").setIndex("pieces", 0.0, curPiece, Amplitude);

Boston Scientific Public – Public Release Authorized

Method: Modify Evaluation Times

// Setup transition time for piecewise functions ==== RECORD
model.component("comp1").func("pw1").set("smoothzone", xTime/5);

// Find evaluation times ==== CUSTOM
String timeStr = "0";
for (int i = 1; i < nTime; ++i) {
timeStr += ",";
timeStr += toString(times[i]);

}

// set times for evaluation ==== RECORD
model.study("std1").feature("time").set("tlist", timeStr);

Boston Scientific Public – Public Release Authorized

Advanced Capabilities

Boston Scientific Public – Public Release Authorized

Key Takeaways

• We demonstrate how to customize and model irregularly changing boundary

conditions across a wide range of time scales.

• The powerful Application Builder creates a user-friendly app which is linked to a

customized piecewise function in the model.

• To ensure an optimal simulation, evaluation times are recorded and specified to

resolve pulse events across large time scales.

• This automated approach saves time, reduces errors, and can be applied to

many different physics.

Contact

Dr. Paul Belk

Paul.Belk@bsci.com

mailto:Paul.Belk@bsci.com

