

UNIVERSITÀ DEGLI STUDI DI MILANO

A numerical model for the unified analysis of soil sedimentation-consolidation phenomena

F. Cecinato¹, G. Della Vecchia²

1. Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Italy.

2. Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Italy.

Relevant engineering applications

Submarine pipeline trench backfilling

(Stijn Biemans 2012)

Land reclamation

(1) Sedimentation & (2) Consolidation

- Deposition of solid material from a fluid from a state of suspension
 - «Fluid» state
 - Absence of interparticle force chains

- Gradual volume reduction in saturated **soil** due to pore fluid drainage
 - «Solid» state
 - Formed sediment network structure able to carry its own weight

POLITECNICO MILANO 1863

Sediment

Clear Liquid Zone

Suspension Interface

Constant Composition Zone

Variable Composition Zone

Sludge Interface

Irfan (2016)

(1) Kynch's theory of sedimentation

<u>Hp:</u>

- $v_s = v_s(c)$
- Continuity of solid and fluid phases

Hindered settling equation (Kynch 1951)

- Eulerian coordinate formulation
- c = solid mass per unit volume

Kynch's theory numerical implementation

- Comsol implementation in Lagrangian coordinate
- Comparison with analytical and numerical solutions from literature

Comparison with analytical solution (characteristics) Evolution of solid-liquid interface position & constant concentration lines

Comparison with numerical solution of Bürger et al. (2000)

(2) Large strain 1D consolidation theory

Gibson et al. (1967)

- Continuity equation for solid and fluid phases
- Darcy's law

Lagrangian
coordinate
$$z(x) = \int_0^x \frac{1}{1+e} dx$$

$$k = k(e)$$
$$\sigma' = \sigma'(e)$$

$$\frac{\partial e}{\partial t} = \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f} \frac{1}{1+e} \frac{d\sigma'}{de} \frac{\partial e}{\partial z} \right] \mp (\gamma_s - \gamma_f) \frac{d}{de} \left[\frac{k}{\gamma_f} \frac{1}{1+e} \right] \frac{\partial e}{\partial z}$$

Large strain consolidation numerical implementation

Interaction coefficient

COMSOL

CONFERENCE

More general form of effective stress principle via interaction coefficient $\beta(e)$

$$\sigma' = \beta(e)(\sigma - u)$$

- Used to model transition between sedimentation and consolidation
- Defined via step function

$$\beta(e) = \begin{cases} 1 & e \le e_s \\ a_5 e^5 + a_4 e^4 + a_3 e^3 + a_2 e^2 + a_1 e + a_0 & e_s < e < e_m \\ 0 & e \ge e_m \end{cases}$$

Step Function in COMSOL Multiphysics

Governing equation (Pane & Schiffman 1985)

•
$$\frac{\partial e}{\partial t} = \mp \left(\frac{\gamma_s}{\gamma_f} - 1\right) \frac{d}{de} \left(\frac{k}{1+e}\right) \frac{\partial e}{\partial z} + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\beta(e)\frac{d\sigma'}{de}\frac{\partial e}{\partial z}\right] + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\frac{d\beta(e)}{de}\sigma'\frac{\partial e}{\partial z}\right]$$

Governing equation (Pane & Schiffman 1985)

•
$$\frac{\partial e}{\partial t} = \mp \left(\frac{\gamma_s}{\gamma_f} - 1\right) \frac{d}{de} \left(\frac{k}{1+e}\right) \frac{\partial e}{\partial z} + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\beta(e)\frac{d\sigma'}{de}\frac{\partial e}{\partial z}\right] + \frac{\partial}{\partial z} \left[-\frac{\kappa}{\gamma_f(1+e)}\frac{d\beta(e)}{de}\sigma'\frac{\partial e}{\partial z}\right]$$

UNIVERSITÀ

DEGLI STUD

DI MILANO

Governing equation (Pane & Schiffman 1985)

Governing equation (Pane & Schiffman 1985)

•
$$\frac{\partial e}{\partial t} = \mp \left(\frac{\gamma_s}{\gamma_f} - 1\right) \frac{d}{de} \left(\frac{k}{1+e}\right) \frac{\partial e}{\partial z} + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\beta(e)\frac{d\sigma'}{de}\frac{\partial e}{\partial z}\right] + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\frac{d\beta(e)}{de}\sigma'\frac{\partial e}{\partial z}\right]$$

Governing equation (Pane & Schiffman 1985)

•
$$\frac{\partial e}{\partial t} = \mp \left(\frac{\gamma_s}{\gamma_f} - 1\right) \frac{d}{de} \left(\frac{k}{1+e}\right) \frac{\partial e}{\partial z} + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\beta(e)\frac{d\sigma'}{de}\frac{\partial e}{\partial z}\right] + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\frac{d\beta(e)}{de}\sigma'\frac{\partial e}{\partial z}\right]$$

$$\beta(e) = 1$$

 $e \le e_s$

$$\frac{\partial e}{\partial t} = \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f} \frac{1}{1+e} \frac{d\sigma'}{de} \frac{\partial e}{\partial z} \right] \mp (\gamma_s - \gamma_f) \frac{d}{de} \left[\frac{k}{\gamma_f} \frac{1}{1+e} \right] \frac{\partial e}{\partial z}$$

Governing equation (Pane & Schiffman 1985)

•
$$\frac{\partial e}{\partial t} = \mp \left(\frac{\gamma_s}{\gamma_f} - 1\right) \frac{d}{de} \left(\frac{k}{1+e}\right) \frac{\partial e}{\partial z} + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\beta(e)\frac{d\sigma'}{de}\frac{\partial e}{\partial z}\right] + \frac{\partial}{\partial z} \left[-\frac{k}{\gamma_f(1+e)}\frac{d\beta(e)}{de}\sigma'\frac{\partial e}{\partial z}\right]$$

-

Validation of FE model

• Validation against numerical solution (Jeeravipoolvarn 2009)

Validation against experimental data

Validation against experimental data

Conclusions

- The numerical model can simulate
 - ✓ Large-strain consolidation
 - ✓ Sedimentation
 - ✓ Sedimentation-consolidation
- Model validation against experimental data
 - ✓ Simulation of sedimentation-consolidation processes involving clayey material
 - Application to land reclamation problems
 - ✓ Simulation of sedimentation due to inflow of sand suspension
 - Application to underwater trench backfilling and pipeline-soil interaction problems

UNIVERSITÀ DEGLI STUDI DI MILANO

THANK YOU FOR YOUR KIND ATTENTION

