Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Aurélien Lejeune (Ph.D., President)

+33 (0)7 86 53 03 85, aurelien.lejeune@protostep.fr *PROTOSTEP, Cergy-Pontoise, 95015, France*

VICOMSOL

Certified Consultant

About PROTOSTEP

Simulation, Expertise, R&D solutions

PROTOSTEP, SAS 32, Boulevard du Port, CS20001, 95015, Cergy-Pontoise

French company founded in 2019

Headquarters in La Turbine (95015, Cergy-Pontoise) Main premisses in Paris-Saclay campus (91120, Palaiseau)

2 Doctors with Ph.D. in Physics 1 Engineer in Electrotechnics

www.protostep-forward.com

Expertises: Fundamental Physics Plasma Physics CFD, turbulence and shock wave

On-going developments: Neural Networks based methods

Fields of application:

DC/RF/microwave plasmas Wind/water fluid-structure interactions EM/High-voltage environnements Structural mechanics and Fatigue Heat transfers

Missions:

Expertise and Consultancy Numerical modelling and Study Standalone Application

Plasma, the fourth state of matter

- Rare on Earth at the natural state: aurora borealis, lightning, flame
- Most abundant form of ordinary matter in the Universe: stars, intracluster medium, intergalactic medium
- Plasma contains electrons, ions and neutrals (atoms and molecules)
- Plasma can be artificially generated over a wide range of operating conditions: Low-pressure plasma, Atmospheric-pressure plasma, DC discharge, Arc discharge, RF/microwave plasma, …

• **3 categories of plasma:**

- \circ Cold plasmas (low pressure < 1 mbar, ambient temperature \sim 300 K)
- \circ Thermal plasmas (atmospheric pressure, medium temperature $\sim 10^{3-4}$ K)
- o Fusion plasmas (high pressure ≥ 1 atm, high temperature \sim 10⁶ K)

The more the particle interactions increase, the more the challenges in simulation are met

www.protostep-forward.com

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Certified Consultant

COMSO

Problem statement

- **Microwave plasmas (0.3-300GHz)** are used in industry for various applications such as in microelectronics or decomposition of greenhouse gases
- **High-pressure microwave plasmas** are still studied in laboratories since they are experimentally characterized by specific phenomena of contraction or filamentation [1]

Overview of the existing models

• **In-Plane Microwave Plasma** - Application ID: 8664

RF module + Plasma module

 \rightarrow valid at low pressure, no increase in temperature

• **Inductively Coupled Plasma (ICP) Torch** - Application ID: 18125

AC/DC module + Plasma module

 \rightarrow valid at atmospheric pressure with an increase in temperature, no reaction set is considered, thermodynamic equilibrium vs T is assumed for the gas mixture properties

RF module

 \rightarrow waveguide-to-coaxial coupling is observed, no plasma

Surface: Electric field norm (V/m) Contour: Electron density (1/m

 0.22 $0₂$ 0.18 0.16 0.14 0.12

 0.08

 0.02

 -0.1

www.protostep-forward.com

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Main goals and expected results

- In that context, **a fully-coupled microwave plasma model at atmospheric pressure** with COMSOL Multiphysics® is a necessary step to optimize the development of such a plasma reactor
- Four blocks of Physics must be considered to study this problem:
	- o **Electromagnetics** for the microwave propagation and plasma interaction RF module
	- o **Fluid dynamics** for the gas mixture flow CFD module
	- o **Heat transfers** for the thermodynamic equilibrium Heat transfer module
	- o **Plasma physics** for the electron and heavy particule production Plasma module
- The expected results are:
	- o **Production of the plasma**
	- o **Absorption of the microwave (skin effect)**
	- o **Waveguide-to-coaxial coupling**
	- o **Increase in the gas temperature**

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Simulation of plasmas: Numerical assumptions [3]

• **Fluid approach:**

- o Continuum
- o Transport equations
- o Assumed Maxwellian EEDF

These assumptions are satisfied in the present case study.

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

[3] J. Crompton and L. Gritter, Plasma modeling in COMSOL Multiphysics®, AltaSim Technologies - https://www.comsol.fr/video/modelingplasmas-in-comsol-multiphysics

www.protostep-forward.com

Certified Consultant

COMSOL

• **Electron density transport [4]:**

$$
\frac{\partial u}{\partial t} + \nabla \cdot \Gamma_e = \underbrace{(R_e)}_{\text{Production rate}} [1/(m^3 \text{ s})]
$$
\n
$$
\Gamma_e = - \underbrace{(\mu_e \mathbf{E}) n_e}_{\text{Convective flux}} - \underbrace{\nabla (D_e n_e)}_{\text{Diffusive flux}} [1/(m^3 \text{ s})]
$$
\n
$$
[1/(m^2 \text{ s})]
$$

Convection of electrons due to fluid motion (**u**) is neglected **E** is the electric field driven by the **Maxwell's equations**

$$
\underbrace{(R_{ex} = \pm n_e n_X k_{ex})}_{\text{ex}} \qquad k_{ex} = \int_0^{+\infty} \sigma_{ex}(u_e) 4\pi u_e^2 f(u_e) u_e du_e
$$

$$
f(u_e) = n_e \left(\frac{m_e}{2\pi k_B T_e}\right)^{\frac{3}{2}} \exp\left(-\frac{m_e |\mathbf{u}_e|^2}{2k_B T_e}\right)
$$

Maxwellian EEDF [1]

Net electron production [5]

www.protostep-forward.com

 ∂n_{α}

This is how electron density balance is computed.

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

[4] COMSOL Help Resources: Plasma Module > User's Guide > Plasma Interfaces > Plasma Reactors Theory

[5] W. Zhang, Recherche numérique et expérimentale sur les propriétés de décharge et les caractéristiques de propagation électromagnétique dans les torches à plasma micro-ondes, Toulouse INP, 2019

COMSOL

Certified Consultant

8/21

• **Electron energy density transport [6]:**

$$
\frac{\partial n_{\varepsilon}}{\partial t} + \nabla. \Gamma_{\varepsilon} + \mathbf{E}.\Gamma_{\varepsilon} = \underbrace{\mathcal{S}_{en}}_{\text{Energy loss/gain}} + Q \qquad \text{[W/m}^3\text{]}
$$

 $\Gamma_{\rm s} = -(\mu_{\rm s} {\bf E}) n_{\rm s} - \nabla (D_{\rm s} n_{\rm s})$ $[W/m^2]$

Convection of electrons due to fluid motion (**u**) is neglected **E** is the electric field driven by the **Maxwell's equations Q** is an external heat source driven by the **Electron heat source**

$$
Q = \frac{1}{2} \Re(\mathbf{j} \cdot \mathbf{E}^*) = \frac{n_e e^2}{m_e} \frac{v_m}{v_m^2 + \omega^2} \frac{{E_0}^2}{2}
$$

Heat source for the electrons (absorbed power density [1])

Electron energy transfers [5]

This is how microwave power is transferred to the electrons.

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

[6] COMSOL Help Resources: Plasma Module > User's Guide > The Drift Diffusion Interface > Theory for the Drift Diffusion Interface > Electron Transport Theory

www.protostep-forward.com

COMSOL

• **Heavy species mass fraction transport [7]:**

This is how heavy species mass fraction balance is computed.

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

[7] COMSOL Help Resources: Plasma Module > User's Guide > The Heavy Species Transport Interface > Theory for the Heavy Species Transport Interface > Multicomponent Diffusion Equations

www.protostep-forward.com

COMSOI

• **Thermodynamic properties: Total heat source for heavy species [8]**

$$
Q = \sum_{k} Q_{k} + Q_{e,k} = \sum_{k} -H_{k}r_{k} + \underbrace{\left(2\frac{m_{e}}{m_{k}}\right)\frac{3}{2}\left(T_{e} - \frac{k_{B}T}{e}\right)}_{\text{Electron impact reactions}}F r_{k} \quad \text{[W/m}^{3]}
$$

$$
h_{k} = R_{g} \left(\underbrace{a_{1}}T + \frac{a_{2}}{2}T^{2} + \frac{a_{3}}{3}T^{3} + \frac{a_{4}}{4}T^{4} + \frac{a_{5}}{5}T^{5} + \underbrace{a_{6}}\right) + F\left(\text{h}\right)
$$

Enthalpy of reaction in J/mol from the NASA polynomials [9]

This is how reactions in a plasma heat the background gas.

• **Poisson's equation [4]**

$$
\nabla \cdot (\varepsilon_0 \varepsilon_r \mathbf{E}) = \rho_q \qquad \rho_q = q \left(\sum_k Z_k n_k - n_e \right)
$$

Space charge density

$$
\varepsilon_r(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + v_m^2} - i \frac{v_m}{\omega} \left(\frac{\omega_p^2}{\omega^2 + v_m^2} \right)
$$

 $Im(\epsilon_{r}) \rightarrow$ Absorption is expected in the plasma

This is how plasmas react with an external electric field.

www.protostep-forward.com

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

[8] Plasma Module > User's Guide > The Heavy Species Transport Interface > Theory for the Heavy Species Transport Interface > Thermodynamic Properties

[9] E. Goos, A. Burcat and B. Ruscic, "EXTENDED THIRD MILLENIUM IDEAL GAS AND CONDENSED PHASE THERMOCHEMICAL DATABASE," [Online]. Available: http://garfield.chem.elte.hu/Burcat/THERM.DAT

11/21

:OMSOL

Simulation of electromagnetic wave propagation

• **Wave equation:**

$$
\left(\nabla^2 + \mu_0 \mu_r \sigma \frac{\partial}{\partial t} + \frac{\varepsilon_r \mu_r}{c^2} \frac{\partial^2}{\partial t^2}\right) \pmb{E}(\pmb{r}, t) = 0
$$

o **In a rectangular waveguide:**

$$
E(r,t) = 0 \qquad E(r,t) = E(x,y)e^{-i\omega t}e^{ikz}
$$

Magnetic field is not considered here since its interaction with the electrons can be neglected (non-magnetized plasma)

$$
E(\mathbf{r},t) = \begin{cases} E_x = 0\\ E_y = i\omega B_0 \left(\frac{a}{\pi}\right) \sin\left(\frac{\pi x}{a}\right) e^{-i\omega t} e^{ikz} \\ E_z = 0 \end{cases}
$$

$$
k^2 = k_{10}^2 = \mu \varepsilon \omega^2 - \frac{\pi^2}{a^2}
$$

TE10 mode is expected in the rectangular waveguide

This is how EM field propagation is computed.

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Certified Consultant

VECOMSOL

Simulation of heat transfers

• **Heat equation:**

$$
\rho C_p \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) T + \nabla.
$$
\n
$$
\mathbf{q} = \n\qquad\n\begin{array}{c}\nQ \\
\text{heat flux} \\
\text{by convection} \\
\text{(electrons and heavy species)}\n\end{array} \qquad \text{[W/m}^3\text{]}
$$

 $\mathbf{q} = -k \nabla T$ k is the thermal conductivity in W/m/K *C***p** is the heat capacity in J/K/kg

$$
C_{p,k} = R_g(a_1) + (a_2)^r + (a_3)^{r^2} + (a_4)^{r^3} + (a_5)^{r^4}
$$

Heat capacity in J/mol/K from the NASA polynomials [9]

This is how thermal equilibrium is computed.

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Certified Consultant

Simulation of fluid dynamics

• **Navier-Stokes equation:**

$$
\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u}.\nabla)\mathbf{u} = \nabla \cdot \left[-\underset{\text{pressure}}{\rho} \mathbf{I} + \underset{\text{viscous stress tensor}}{\mathbf{K}} \right] + \mathbf{F} \qquad \text{[N/m}^3]
$$

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0
$$

This is how fluid flow is computed.

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Certified Consultant

Results: Waveguide-to-coaxial coupling

Results: Wave absorption and skin effect

Results: Gas mixture temperature

Results: Gas mixture flow velocity

The change of the thermodynamic and fluid properties of the gas mixture with the gas temperature may affect the flow velocity.

www.protostep-forward.com

COMSOL

Certified Consultant

11

Conclusions

- **A fully-coupled microwave plasma model at atmospheric pressure** has been successfully achieved in Ar with COMSOL Multiphysics®
- **Waveguide-to-coaxial coupling** has been recovered in the presence of a cylindrical plasma crossing a rectangular waveguide as expected from the theory of the transmission lines
- **Skin effect** has been observed as expected from the high-pressure plasma theory
- **A rise of the gas mixture temperature** has been observed according the thermodynamic properties and the waveheating due to the electrons in a resistive plasma

www.protostep-forward.com

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

Next steps

- **Next works** will focus on:
	- o The EEDF's when they are computed from the Boltzmann equation
	- \circ The operating conditions and design
	- o The gas flow regime at higher mass flow rates
	- o Other feed gases with more by-products
	- o Heavy-heavy particle collisions
	- o Radiative heat transfers

Thank you for your attention

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

