#### Taking a detailed cross section out of a 3D model

To increase performance and accuracy.

J. Krah

Services Nordic, Vattenfall, Solna, SE, Sweden





# Introduction

Problem: Avoid overheating of cable insulation.

Task: Locate the hot-spot temperature.

3D challenges:

- Crossing in ground
- J-tube



#### **Methods and use of COMSOL Multiphysics<sup>®</sup>**

AC/DC and heat transfer module.

Split the 3D model into two parts.

Replicate the results of the best 3D model.



Duct surface boundary condition:

$$q = q_0 (1 + \alpha_{Cu} (ht. Tvar + 7.5 \text{ K} - 20 \text{ °C}))$$



### Results

|                     | 3D                 | Segregated           |
|---------------------|--------------------|----------------------|
| Mesh                | Extremely fine     | Finer                |
| DOFs                | 114 Millions       | 1.6 Millions         |
| Physical<br>memory  | 303 GB             | 8 GB                 |
| Solution time       | 45 min 11s         | 2 min 15 s           |
| Hot spot duct       | 50.4°C (50.9°C)    | 51.7 °C              |
| Hot spot cable      | 57.3 °C (59°C)     | 59.5 °C              |
| Possible<br>physics | Heat<br>conduction | Full<br>multiphysics |
| Improvements        | Mesh scaling       | Lazy approach        |



### Results

Further results for the J-tube application.

# Lazy approach works well for J-tube case.





m m/s

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

3

2

1

0

# Conclusions

Segregated model can replace a 3D model with the same physics. It is conservative neglecting axial heat flux in conductors. It can cope better with multiphysics than a 3D model. It uses a fraction of the memory and the solution time. In special cases of model split the approach can be simplified.