

METAVISION

the European Union

Funded by

THE ART OF NOISE MANAGEMENT

Numerical Modeling of Phononic Crystal-based Ventilated Noise Barrier for Traffic Noise Attenuation

Noman Ahsan, Luca Sangiuliano, Luca D'Alessandro, Paul Charkaluk, Matteo Selvatici, Paulo Amado-Mendes, Luís Manuel C. Godinho

COMSOL Conference 2024 Florence

October 22–24

Florence Teatro del Maggio Musicale Fiorentino, Florence, Italy

Introduction

Objective and Modeling

Stopband Analysis on Unit Cell

4

5

6

3

Sound Transmission Loss Analysis on semi-infinite extended barriers

Sound Transmission Loss Analysis on finite height barrier

Introduction

5

Objective and modeling

Stopband Analysis on Unit Cell

Sound Transmission Loss Analysis on semi-infinite extended barriers

Sound Transmission Loss Analysis on finite height barrier

Noise Pollution and Current Mitigation Strategies

- > Heavy traffic, constant noise, discomfort
- > Stress, hearing impairment, ecosystem imbalance,
- > Barriers placed to reduce noise propagation
- > Tall structures, absorb, reflect, and deflect sound
- Concrete, glass, steel, materials used

Problem Statement

- ➤ Limit noise barrier height to 2-3m due to high wind load
- High wind load leads to high rotational loads
- Blocks airflow and affect ventilation
- Prevents wind deflection, creating a high-pressure zone
- Bulky design adds to structural constraints and high
 visual impact on the landscape
- More material utilized due to high effective area

Schematics showing how these barriers have constraints [3]

Possible Innovative Solution: Metamaterial Ventilated Barriers

- Utilize periodic structures to manipulate sound waves
- Structure consists of regularly spaced unit cells
- Designed to control sound transmission or achieve sound insulation
- Manipulates wave behavior through scattering, interference, resonance, and absorption
- Effective for achieving specific frequency ranges of sound insulation
- Less material utilized and sustainable

(a) 1-D sonic crystal consisting of periodically arranged plates; (b) 2D sonic crystal with cylinders arranged in a square array; (c) 3D sonic crystal consisting of a periodic arrangement of spheres in a cubic arrangement [4].

Introduction

5

Objective and modeling

Stopband Analysis on Unit Cell

Sound Transmission Loss Analysis on semi-infinite extended barriers

Sound Transmission Loss Analysis on finite height barrier

1 2 9 0 UNIVERSIDADE D COIMBRA

Objectives of the current study

- > Target traffic noise with a ventilated metamaterial barrier
- > Propose design guidelines for metamaterial ventilated barrier
- ➢ Investigate the Sound Transmission Loss (STL) for idealized and in-situ

conditions

- > Compare Unit Cell (UC) infinite modeling to finite size modeling
- Investigate the effect of geometrical parameters, incident angles, and the number of UCs
- Provide a baseline for future studies in numerical modeling and design of

Metamaterial Ventilated Barriers

Methodology

- > Multiple noise barriers placed vertically with spacing for airflow
- Stopband frequency determined by barrier parameters
- Proposed unit cell design and numerical model
- > Utilizes Pressure Acoustics in the frequency domain
- Narrow region acoustics modeled for accuracy
- > Considerations include barrier diameter, gap, and height
- > Modeled as plane wave incidence and diffuse field conditions

Ζ

Introduction

3

5

Objective and modeling

Stopband Analysis on Unit Cell

Sound Transmission Loss Analysis on semi-infinite extended barriers

Sound Transmission Loss Analysis on finite height barrier

Proposed UC Model and Analyses

- > Unit Cell design proposed for barrier representation
- Model integrates pressure acoustics and narrow region acoustics
- Considered thermo-viscous losses
- Model sound wave-barrier interaction, considering geometry and periodicity
- Analysis conducted to assess unit cell performance and validate model:
 - Stopband Analysis of Unit Cell
 - Parametric Analysis for spacing order of Unit Cells
 - Parametric analysis for geometric variations
 - Infinite Unit Cell Modeling (Idealised Conditions)
 - Finite Unit Cell Modeling (in-situ Conditions)

Stopband Analysis of Unit Cell

- > The stopband frequency range of 1250-2200 Hz
- Corresponds closely to the frequencies of the traffic noise spectrum
- ➢ By targeting this frequency range, the barrier can efficiently attenuate the most noise sources.

Introduction

5

Objective and modeling

Stopband Analysis on Unit Cell

extended barriers

Sound Transmission Loss Analysis on semi-infinite

Sound Transmission Loss Analysis on finite height barrier

Sensitivity Analysis: Number of Unit Cells

- > Barriers extend infinitely vertically and perpendicular to wave propagation
- > Evaluated the effect of varying unit cell numbers along wave direction
- Reduction of unit cells impact sound attenuation due to less scattering.
- Spacing order coincidence with wavelength affects frequency shift and creates conditions for constructive interference (Braggs Effect).

Geometric Analysis of Unit Cell

- > Parametric analysis varies gap (c) and barrier diameter (d) for STL influence.
- Increasing unit cell diameter enhances STL but reduces ventilation.
- > Wider gaps compromise noise mitigation but improve ventilation.
- > Sensitivity analysis explores barrier diameter and gap effects on stopband.
- > This relationship validates the barrier's ability to block specific frequencies.
- > Despite STL values, getting a peak within the same stopband frequency range.
- > Identify design configurations that maximize noise reduction effectiveness.
- Unit Cell Symmetry and Homogeneity

Introduction

Objective and modeling

Stopband Analysis on Unit Cell

Sound Transmission Loss Analysis on semi-infinite extended barriers

5

Sound Transmission Loss Analysis on finite height barrier

Semi-Infinite and Finite Unit Cell Modeling

Infinite Unit Cell

- Confidential -

Results Comparison

- In plane-wave behavior, finite barrier height influences acoustic behavior, and STL decreases.
- > Idealized conditions provide maximum potential for noise attenuation.
- In the diffuse field, infinite UC got STL Peak at 1600 Hz and finite Unit Cell at 800 Hz.
- Wave Bypassing and Diffraction around finite height barrier cause STL reduction.
- These results give theoretical and practical insights into noise barrier effectiveness evaluation.

Introduction

5

6

Objective and modeling

Stopband Analysis on Unit Cell

Sound Transmission Loss Analysis on semi-infinite extended barriers

Sound Transmission Loss Analysis on finite height barrier

- > In this work, our research attention was focused on:
 - > Preliminary design baseline of a Ventilated Barrier
 - Mitigating mid-range frequency traffic noises in 1000–2500 Hz
 - > Providing numerical guidelines to assess sound insulation of noise barriers
- > Model shows the behavior of unit cells under different boundary conditions
- > STL computed for both idealized conditions and in-situ and results validating the model.
- > Will investigate adjustments to the unit cell design to target broader or more specific frequency ranges.
- > Will analyze airflow and ventilation effectiveness to strike the best balance between noise reduction and air circulation.
- > Will extend to model sandwiched barriers, Helmholtz structures, Helmholtz resonators, or square and rectangular shape barriers.

THE ART OF NOISE MANAGEMENT

Thank you.

Phononic Vibes S.r.I Sede Legale via Schiaffino, 11 - 20158 Milano <u>metainfo@phononicvibes.com</u>

www.phononicvibes.com/

Aknowledgement

We gratefully acknowledge the European Commission for its support of the Marie Sklodowska Curie program through the Horizon Europe DN METAVISION project (GA 101072415)

Bibliography

- 1. <u>www.dukeacrylic.com</u>
- Arpan Gupta, "A Review on Sonic Crystal, Its Applications and Numerical Analysis Techniques," Physical Foundations of Engineering Acoustics, V60, 2014, P 223-234
- Laxmi, Vijaya, Chaitanya Thakre, and Ritesh Vijay. "Evaluation of noise barriers based on geometries and materials: a review." Environmental Science and Pollution Research (2022): 1-17.
- Yang, Weijun et al. "The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles." Applied Acoustics 160 (2020)