COMSOL Conference 2024 Florence

Monte-Carlo Model for Radiation Transport in Solid X-Ray Targets

JUMERICS.CO

Consultant Engineers for Numerical Simulation Dipl.-Ing. Dr. techn. Christian Feist

Dr. Arno Plankensteiner

Director Corporate Research & Development

PLANSEE SE

6600 Reutte Austria Arno.Plankensteiner@plansee.com

6020 Innsbruck Austria Christian.Feist@cenumerics.com

CENUMERICS

Dr. Christian Feist

Consulting engineer | Accredited and

certified expert | COMSOL certified consultant

MICOMSOL

INTRODUCTION

CENUMERICS

- engineering consultancy founded in 2005
- **·** in Innsbruck, Austria
- mathematical modeling and numerical simulation
	- multiphysics modeling
	- component and process simulation
	- **EX application and software development**
		- COMSOL Application Builder
		- **EXECOMSOL Physics Builder**
		- \bullet C/C++, Java

INTRODUCTION

PLANSEE

- founded in 1921 for production of molybdenum (Mo) and tungsten (W) wires
- 1,000 MEUR turnover; 3,500+ employees worldwide (2023/24)
- world market leader in powder-metallurgical (P/M) production of refractory metals

■ used in wide range of high-tech applications and industries

- unique combination of material properties
	- high melting point
	- excellent high temperature strength

X-RAYS

High-energy electromagnetic radiation

- **In discovered 1895 by CONRAD RÖNTGEN**
- **Example 2** energy range above UV light
- good penetration of solid matter (*ρ* ≈ 0)
- widely used in medical diagnostics and material testing

Production using high-vacuum X-ray tubes

- electrons e[–] thermionically emitted from cathode (C)
- \blacksquare accelerated to anode (A), voltage $10^1...10^2$ kV, formation of e-beam
- impact on target or focal track (T)
- cascade of atomic interactions within target material
- emission of X-ray photons y as:
	- (1) bremsstrahlung \rightarrow continuous spectrum
	- (2) characteristic X-rays \rightarrow discrete spectrum
- **E** escaping by tube window $(W) \rightarrow$ utilizable radiation

Ref: [wikipedia:User:ChumpusRex, X ray tube in housing,](https://commons.wikimedia.org/wiki/File:Xraytubeinhousing_commons.png) Accessed: 2024-08-28

Mid-bin energy (keV)

X-RAYS

Low efficiency, high heat dissipation

- only 0.1...1% as photon emission
- significant thermo-mechanical loads

Concepts for increased power

- active cooling of stationary anodes
- rotating anodes
- rotating envelope anode
- line-focus-principle (target inclination, stretched beam)

Motivation for study

- numerical model for radiation transport in X-ray target
- **.** gain insight into performance of target, emitted spectrum, heat dissipation, influence of main design parameters

Ref (top, bottom): PLANSEE

Modeling of radiation transport

- transport of high-energy electrons and photons (particles) through matter (medium)
- **Example ration in the rations and molecules**
- energy transfer and secondary particle emission (cascade, particle shower)
- energy deposition within medium

Monte Carlo method

- particle-based approach
- history of particles discretized as random sequence of
	- (1) free "flights" (sampled from mean free path length)

(2) subsequent particle-interactions (sampled from relative interaction probability)

- change of flight direction and energy
- **·** possible emission of secondary particles

tracked until energy absorption

$$
s(E) = -\lambda_{T} \log \xi, \qquad \xi \in [0, 1]
$$

 $\mathbf{x}_{n+1} = \mathbf{x}_n + s \mathbf{t}_n;$ $\mathbf{t}_n = \mathbf{T}(\theta, \varphi) \mathbf{t}_{n-1};$ $\theta = f(E, \ldots), \varphi = 2\pi \xi$

INTERACTION MODEL

Relevant atomic interactions

■ electrons

Ref: reproduced from [Poludniowski et al., 2022]

③

VICOMSOL

COMSOL Conference 2024 Florence - 7 - Contractor - 2004 Florence - 2004 Florence - 2004 Florence - 2004 Florence - 2004 Florence

IMPLEMENTATION

Monte Carlo model implementation

- using COMSOL Multiphysics 6.1
	- no ready-made interface for coupled electron-photon transport
	- COMSOL "Particle Tracing Module" allowing custom implementation
- main features:
	- particle types:
		- electrons
		- photons
		- excited target atoms (energy transfer to medium)
	- particle state variables:
		- particle energy *E* (Note: "massless" formulation)
		- quantities for sampling and statistics
	- interaction model:
		- using *Velocity Reinitialization* and *Secondary Emission* features
		- interaction data (cross sections etc.) for Mo, W, Re from EPICS-database (IAEA)
		- random sampling methods [Salvat, 2019] implemented in extensive function library (native/external C++)
	- domain accumulators: energy deposition (absorbed dose)
	- boundary accumulators: fluence and energy fluence

Consultant Engineers for Numerical Simulatior Model Builder モーナル 天間・国・国・ XRayTarget_3D_cpt_C61_V8u.mph (root) 4 Global Definitions \blacktriangleleft P_i Parameters Pi General parameters (default) Pi Material property parameters (par13) \triangleright Pi. Collision scaling parameters (pgr12 \triangleright \Box Auxiliary parameters (arp23) I *** Unused Parameters (par14) 4 roo Functions $\triangleright \leftarrow$ Common functions (grp24) \triangleright \leftarrow Random number generator functions (grp1) Rational interpolation (RITA) generic sampling functions (grp27) \triangleright \uparrow Probability density functions (PDF) and sampling functions (arp15) Detector plane intersection point (arp2) 4 - Atomic electron and photon interaction data from EADL/EEDL/EPDL (grp22) Atomic data from EADL (grp1) Atomic photon interaction data from EPDL (grp2) Atomic electron interaction cross sections from EEDL (grp3) Analytic - Emission by collision type (by type) (an23) Analytic - Fibonacci number (fib) (an24) $\frac{1}{2}$ Analytic - Equal comparison with tolerance (equals) (an153) Analytic - Efficiency estimate (Koch and Motz, 1959). Equ. (IV-16) (see also comments) (epsilon) (an154) \triangleright $\frac{1}{2}$ Pencil beam fluence and dose results (grp33) \triangleright \pm Gaussian electron beam functions (am32) **D** Geometry Parts \triangleright \equiv Shared Properties **E** Materials Method Calls **D** Settings Forms 4 Component 1 (comp1) (comp) \triangleright \equiv Definitions \triangleright \overline{A} Geometry 1 (geom 1) **中 Materials** Charged Particle Tracing - D_Solid (cpt) (cpt) Mall (default, unused) - Disappear (wall1) $\triangleright \ \leq \ \leq$ Electron (e) [pp I] $\triangleright \ \blacksquare$ Photon (y) (pp2) Excited Target Atom (A* / A+) (pp3) - La Mandatory Auxiliary Dependent Variables ... (am8) > fax Auxiliary Dependent Variable 1 - Shower number (aux1) > fax Auxiliary Dependent Variable 2 - Energy (aux2) 4 Optional Auxiliary Dependent Variables ... (grp26) > for Auxiliary Dependent Variable 3 - Collision Count (aux3) > \int_0^{∞} Auxiliary Dependent Variable 4 - Previous Collision Type (aux4) > [a] Auxiliary Dependent Variable 5 - Collision Count - Electrons, Elastic Scattering (aux5) Auxiliary Dependent Variable 6 - Collision Count - Electrons, Inelastic Scattering (aux6) Auxiliary Dependent Variable 7 - Collision Count - Electrons, Bremsstrahlung Emission (aux7) Auxiliary Dependent Variable 8 - Collision Count - Photons, Photo-Electric Absorption (aux8) Auxiliary Dependent Variable 9 - Collision Count - Photons, Coherent (Rayleigh) Scattering (aux9) Auxiliary Dependent Variable 10 - Collision Count - Photons, Incoherent (Compton) Scattering [aux10] > 333 Release from Grid - Electron Pencil Beam (rela1) A C Velocity Reinitialization - Energy and Particle Absorption in Solid Medium - D. Solid ... /we7 > Accumulator - Energy Absorption - D_Solid (vacc1) Accumulator - Electron Absorption - D. Solid (vacc2) > Accumulator - Photon Absorption - D_Solid (vacc3) Accumulator - Excited Target Atom Absorption - D_Solid /vacc4 Eduation View (info) \triangleq \Box Electron Interactions ... (arp6) \triangleright (1) Elastic Scattering (e + A - e + A) - D_Solid (vre1) \triangleright (2) Inelastic Scattering (e + A - e + A* / 2e + A+) - D_Solid ... (vre2) \triangleright (3) Bremsstrahlung Emission (e + A - e + y + A) - D_Solid _ (vre3) Photon Interactions ... (grp7) \triangleright (4) Photo-Electric Absorption (y + A - e + A) - D Solid ... /vre4) \triangleright (5) Coherent (Ravleigh) Scattering (v + A - v + A) - D Solid (vre5) \triangleright (6) Incoherent (Compton) Scattering (y + A - y + e + A) - D_Solid ... (vre6) 4 Wall - B_SolidBoundary - All Particles Disappearing with Fluence and Energy Fluence Accumulators ... (wall3) > Cumulator - B_SolidBoundary - Electron Energy Fluence [bacc] > Accumulator - B_SolidBoundary - Photon Energy Fluence (bacc2) > Accumulator - B_SolidBoundary - Electron Fluence (bacc3) > Accumulator - B_SolidBoundary - Photon Fluence (bacc4, Equation View (info) 4 Wall - B_Target - Particles Conditionally Freezing or Disappearing with Fluence and Energy Fluence Accumulators ... (wall4 > Accumulator - B_Target - Electron Energy Fluence (bacc1) > Accumulator - B_Target - Photon Energy Fluence (bacc2) > E Accumulator - B_Target - Photon Energy Fluence Caught by Detector (bacc3) > Accumulator - B_Target - Electron Fluence (bacc4) > Accumulator - B_Target - Photon Fluence (bacc5) > Accumulator - B_Target - Photon Fluence Caught by Detector (bacc6) Reflected Incident Electron Clone - B Target (sem 1) Equation View (info) > Wall - B Interface - Pass Through (wall ^{Buf} Fouation View (info) Global ODEs and DAEs (ge) (ge) Global ODEs and DAEs 2 (ge2) (ge2) Boundary DAE - B_Target - Pencil and Gaussian e-beam photon fluence per incident electron (gbphi) (gbphi) Boundary DAE - B_Target - Pencil and Gaussian e-beam photon energy fluence per incident electron (gbpsi) (gbpsi) Bomain DAE - D_Solid - Pencil and Gaussian e-beam dose per incident electron (dode) (dode) A Mesh 1 (mesh1) > nob Study 1 - Small sample, all steps stored, all variables, all probes, instantaneous electron release (std

CENUMERICS.COM

COMSOL Conference

VICOMSOL

APPLICATION

Typical rotating X-ray anode with graphite body

Ref: PLANSEE

APPLICATION

CENUMERICS.COM Consultant Eng

System

COMSOL Conference 2024 Florence - 10 - Company of the Compan

CENUMERICS.COM

VICOMSOL

CENUMERICS.COM

sample size: $N_e = 3.10^5$

VICOMSOL

COMSOL Conference 2024 Florence - 12 - 2024 Florence

Results for GAUSSIAN electron beam

Absorbed dose per incident electron \bar{D}

Solid body Focal spot section *η* = 0 Focal spot section *ξ* = 0

transformation from electron pencil beam to arbitrary finite beam using convolution theorem (beam shape as kernel)

SUMMARY AND OUTLOOK

Summary

- implementation of Monte Carlo model in COMSOL Multiphysics
- radiation transport in solid X-ray targets
- **focus on bremsstrahlung emission (continuous spectrum)**
- state-of-the art sampling methods
- convolution of pencil electron beam results to arbitrary finite e-beam

Outlook

- model enhancement
	- **performance improvements, increase sample size**
	- radiative transitions and characteristic X-ray production
- model application
	- assessment of main parameters: tube voltage, target angle, thickness
	- better understanding of heat source distribution for use in nonlinear cyclic thermo-mechanical FEA

COMSOL Conference 2024 Florence

Monte-Carlo Model for Radiation Transport in Solid X-Ray Targets

Dr. Christian Feist

…thanking you for your attention and looking forward to your questions

