Fluid Dynamic Modeling in Oven Chambers: Balancing Accuracy and Computational Efficiency

Comsol Conference Florence, October, 2024 Ph.D, Christian Bianchi

- Reduction of computational complexity by choosing the best model strategy to simulate the fluid dynamics in a closed oven chamber
- Optimization of the process workflow to maximize the efficiency of module usage

The classical way to investigate the forced ventilation and thermal distribution in a closed chamber is to simulate the **coupled CFD and HT** problem in the full domain

A simpler, but less accurate way to make the same investigation is to **separate the study of the driving force (fan) from the effect in the remaining chamber.**

How good this accuracy can be?

General concept

Steps

INVENTIVE SIMPLIFICATION

The analysis is characterized by three steps:

Step 1

Need of both CFD and HT modules for the entire simulation time over a complex domain

Step 2

Need of only the CFD module for a simplified domain

Step 3

Need of the only HT module for the chamber domain (complexity of the fan is excluded)

				hysice	®	le t	Nodul	2	onthe	ineeri	ne Mo	Mod hu	ule No	dule	rolyte	Nodule Module	odule	per
Mathematics		201	Multi	odule	MOOL	esien Nodi	Je sical	React	e Mat	Mooth	emist	205iti	odule	ther a	anics	ster c	AS NO	2011 P
Expand/Collapse all	්	ACI	Aco	Bat	e.E	Che	n'of	nv cor	tlec	the f	Ju tail	35 File	, Cer	on He	at jo	JIL ME	- Net	3.4
Select any check box to highlight individual products:																		С
Fatigue											~							
Frequency-Stationary		~														~		
Frequency-Transient		~														~		
Frozen Rotor					~													
Linear Buckling													Ζ		Ζ	~		
Mapping			~															
Mode Analysis			~															
Model Reduction	~																	
Phase Initialization					~			~										~
Time to Frequency Losses		~																
Transient Initialization					~													~
Viscoelastic Transient Initialization			~													~		
Wall Distance Initialization					~									~				~

Module usage and timing

Step 1 – Model characteristics

Temperature is set at the resistors surface (500 degC), thermal dissipation can occur at the door

Results - Step 1 – Full oven simulation

Step 2 – Model characteristics

Thin faces used to define the fan geometry

Domain setting

Component 1 (comp1)

Air (mat1)
Moving Mesh

Rotating Domain 1

Definitions
Geometry 1
Materials

4

Step 2 – simplified domain

oven, given to the following value A_{outlet} / A_{outlet wall} = 0,6470

Step 2 – Output quantities

These two output profiles of step 1 are the input for step 3

The door of the oven was open to let the insertion of the pipe. The pipe was placed in front of the fan. A digital anemometer was used to measure the volumetric flow rate.

Rpm	ṁ experimental (kg/s)	ṁ simulation (kg/s)	shift (%)
1000	0,163	0,153	6,22
1600	0,248	0,247	0,25
2000	0,302	0,311	2,65

Velocity and pressure **U** e p – Average over a full rotation step 2 (output)/ step 3 (input)

Since the frozen rotor captures a snapshot of a specific angular position of the fan, another velocity and pressure profile has been considered by averaging all the quantities along the rotation axis

Step 3 – Model characteristics

Results - Step 3 – Simplified simulation Averaged over full rotation

15

Forno 0611 privato degli elementi superflui e delle ventole, profili mediati.

Results – Velocity profile – step1 vs step2

We can compare the results in terms of magnitude of field velocity along the lateral surface of the cylinder that defines the frozen rotor domain

Velocity gradient toward the bottom of the fan is captured by both the models. 16

Profilo velocità – step1 vs step2

Profilo velocità – step1 vs step2

Profilo velocità – step1 vs step2

General overview – step1 vs step3

Velocity magnitude over different tray level positions

Results Tray 1 position – step 1 vs step 3

Results Tray 2 position – step 1 vs step 3 Step INVENTIVE SIMPLIFICATION Step 3 Mag(U) hystogram at h = 0,2 m from the bottom. Mag(**U**) (m/s) Velocity (m/s) 22

22

1

3

5

6

8

Results Tray 4 position – step 1 vs step 3

Results Tray 5 position – step 1 vs step 3

Let's consider how off are the mean values for each tray position between the two steps given the previous hystograms

Tray	shift 1-3 (%)
1	6,45
2	5,48
3	5,60
4	3,03
5	2,30
average	4,57

- 1. The numerical model has been experimentally validated for step 2 and deviation from the experimental values can be considered good.
- 2. The average deviation of the speed distribution in the trays between step 1 and step 3 is less than 5% at all the levels.
- **3.** Qualitatively, the velocity profiles between step 1 and step 2 are very similar, and the main difference is due to loss of some turobent components at the outlet of the fan along the suction axis.

A good balance between accuracy and computational performances can be achieved by studing the fan alone and then imposing velocity profile and pressure

A better usage of the modules can be achieved differentiating the analysis in different steps as presented

INVENTIVE SIMPLIFICATION