A comprehensive COMSOL Modeling for the solar-driven CO₂ electroreduction to CO

Matteo Agliuzza¹, Candido Fabrizio Pirri^{1,2}, Adriano Sacco²

COMSOL CONFERENCE 2024 FLORENCE

¹Applied Science and Technology Department, Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

²Center for Sustainable Future Technologies @Polito, Italian Institute of Technology, Corso Trento 21, 10129 Torino, Italy

matteo.agliuzza@polito.it

Matteo Agliuzza

Ph.D. Candidate

UNIONE EUROPEA Fondo Europeo di Sviluppo Regional

e 🙀 Ministero dell'Istruzione, l'Università e della . Ricerca

Supervisors: Prof. Candido Fabrizio PIRRI and Adriano SACCO

Outline

Introduction

Circular economy and CO_2RR

Artificial Leaf

Introduction on the existing device and results

COMSOL Model

Mathematical model for the physical study of the electrochemical reactor.

Conclusions

Conclusions and brief hint about the perspectives of the future works

Introduction

Fuels **Chemicals Carbon Neutral** cycle **Emissions from** combustion CO, Renewable **Energy Sources** CO, CH₄ CO₂ reactor

Positive net balance of carbon in atmosphere

Carbon neutrality achieved by the transformation of CO_2 into valuable products, such as, Carbon monoxide (CO), Formic Acid (HCOOH). Methanol (CH_3OH), Methane (CH_4), Ethylene (C_2H_4) ...

Introduction

Artificial Leaf project

COMSOL Simulation: WHY?

Predict chemical conditions in:

- boundary layers at interfaces
- bulk

Before prediction, the model is validated through experimental results

Predict performance of the device

Lead the scaling-up process of the electrochemical reactor

EC Model: highlights

2D model ٠ у **1** Membrane BL BL Outlet Outlet Н parameters = Φ_ - ΔΦ_d $\Phi_{\rm m} = \Phi_{\rm e}$ - ΔΦ_d $\Phi_{\rm m}$ $x=x_a$ $x=x_a$ x=x CO 02 ٠ H⁺ H⁺ H+ Anode H₂O CO_2 Cathode CO_2 CO_2 (Pt) (Ag) ٠ K+ K+ space charge OH-OH-HCO₃ HCO₃ CO₃²⁻ CO_{3}^{2-} • CO **O**₂ H₂ Φ=0 $\Phi = -V_c$ 0 Inlet (CO₂ - saturated 0.1M KHCO₃) Inlet (CO₂ - saturated 0.1M KHCO₃) Х **x**_m Xa Xc L Agliuzza et al, J. Phys. Energy (2024)

Assumptions

- All products and species remain in liquid phase
- Catalysts are simulated through their kinetic
- System is isothermal @ ambient T°

- Recirculation through inlets/outlets
- Membrane is implemented as fixed
- Stationary conditions are investigated

Model: main equations

Anode – Cathode domains

Tertiary Current Distribution (TCD) – Electrochemistry module

Anode – Cathode boundaries

Tertiary Current Distribution (TCD) – Electrochemistry module

<u>Kinetics</u>

Butler-Volmer Equation: $j_{partial} = j_0 \left[C_R exp \left(\frac{\alpha_a F}{RT} \eta \right) - C_{OX} exp \left(- \frac{\alpha_c F}{RT} \eta \right) \right]$

<u>Electrochemical reactions</u>

$(\bullet) CO_2 + H_2O + 2e^- \rightarrow CO + 2OH^-$	CO ₂ RR
$(\blacksquare) 2H^+ + 2e^- \rightarrow H_2$	HER
(a) $4H_2O \rightarrow 4H^+ + 0_2 + 4e^-$	OER

Membrane Domain

Secondary Current Distribution (CD) – Electrochemistry module

Ohm's Law

No significant concentration gradients are expected in the membrane

$$i_m = -\sigma_m \Delta \phi_m$$

 $N_{H^+} = \frac{i_m}{F}$

Donnan potential

Required to let TCD and CD interfaces interact

$$\phi_m = \phi_e - \phi_d$$
$$\Delta \phi_d = \frac{RT}{F} ln\left(\frac{[H^+]}{c_m}\right)$$

Results #1: Cell length L

L=0.6 cm

11

Solar-driven CO₂ reduction: Experiment

Power matching requires a suitable match between the voltage-current points of both PV and EC modules. The PV is made of a module of 6 Dye-Sensitized Solar Cells

- I_{op}=8.6 mA (approx. 3.4 mA/cm2)
- V_{op}=3.1 V

•
$$FE_{co} = 82\%$$
, $FE_{H2} = 18\%$

Solar-driven CO₂ reduction: Model

Step 1: Define the mathematical model for the solar cell

$$I = I_{ph} - I_0 \left[exp\left(\frac{V + IR_s}{nV_t}\right) - 1 \right] - \frac{V + IR_s}{R_{sh}}$$

Step 2: Fit the experimental data and retrieve the parameters

Solar-driven CO₂ reduction: Model

Step 3: implement the mathematical equation in COMSOL and perform the time-dependent simulation

Solar-driven CO₂ reduction: first results

- A comprehensive model for the CO₂ electro-reduction is proposed, validated through experimental results
- The photovoltaics module is implemented through its governing equation
- More complex electrochemical cells will be implemented (e.g. Flow Cells)
- Optimize the model to be predictive for PV-EC performance under different incident light conditions (*e.g.* cloudy weather)

Thank you for your attention!

Experimental set-up

- Batch cell + electrolyte recirculation
- Catalyst: Ag NPs
- Electrolyte: 0.1M KHCO₃
- $L_1 = 1.2 \text{ cm}$; $L_2 = 0.5 \text{ cm}$
- Nafion membrane

FE: Figure of merit to determine the selectivity towards the production of the product of interest

The y-dependancy can be safely ignored.

All the data are reported as the average across the cathode height.

Results #2: inflow velocity $u_0 @ L=0.25 cm$

Dependancy on flow velocity is more pronounced on higher voltages. The reason is related to the fact that higher CO_2 feed rates is more impactful when there are higher rates of carbon dioxide comsuption.

Results #3: L=0.25 cm , u_0 =0.067 m/s @V= 3V, 4V

Results #2: inflow velocity u₀ @ L=0.25 cm

Results #4: L=0.25 cm , u_0 =0.067 m/s

@ membrane surface

