A comprehensive COMSOL Modeling for the solar-driven CO² electroreduction to CO

Matteo Agliuzza¹, Candido Fabrizio Pirri^{1,2}, Adriano Sacco²

¹Applied Science and Technology Department, Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

²Center for Sustainable Future Technologies @Polito, Italian Institute of Technology, Corso Trento 21, 10129 Torino, Italy

matteo.agliuzza@polito.it **Matteo Agliuzza**

Ph.D. Candidate

UNIONE EUROPEA Fondo Europeo di Sviluppo Regional

Supervisors: Prof. Candido Fabrizio PIRRI and Adriano SACCO

Outline

Introduction

Circular economy and CO₂RR

Artificial Leaf

Introduction on the existing device and results

COMSOL Model

Mathematical model for the physical study of the electrochemical reactor.

Conclusions

Conclusions and brief hint about the perspectives of the future works

Introduction

Positive net balance of carbon in atmosphere Carbon neutrality achieved by the transformation of $CO₂$ into valuable products, such as, Carbon monoxide (CO) , Formic Acid ($HCOOH$). Methanol ($CH₃OH$), Methane ($CH₄$),Ethylene (C_2H_4) ...

CO2 reactor

 e

CO-

 $CO, CH₄$

Fuels

Chemicals

Renewable Energy Sources *Carbon Neutral*

cycle

Emissions from combustion

Introduction

Artificial Leaf project

COMSOL Simulation: **WHY**?

Predict chemical conditions in:

- boundary layers at interfaces
- bulk

Before prediction, the model is validated through experimental results

Predict performance of the device

Lead the scaling-up process of the electrochemical reactor

EC Model: highlights

O2

 $\Phi_{\rm m}$ = $\Phi_{\rm e}$

x=x^a

 $\mathbf{x} = \mathbf{x}$ ^a

Outlet Outlet

 $\mathbf{A} \cdot \mathbf{\Delta} \Phi_{\mathbf{d}}$ **d** $\mathbf{B} \cdot \mathbf{B}$ **d** $\mathbf{B} \cdot \mathbf{A}$ **d** $\mathbf{B} \cdot \mathbf{A}$ **d** $\mathbf{B} \cdot \mathbf{A}$ **d** $\mathbf{B} \cdot \mathbf{A}$

x=x^a

L L Lm

BL Membrane BL

• 2D model

x

- All products and species remain in liquid phase
- Catalysts are simulated through their kinetic parameters
- System is isothermal @ ambient T°

- Recirculation through inlets/outlets
- Inlet (CO₂ saturated 0.1M KHCO₃) $\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$ **Inlet (CO₂ - saturated 0.1M KHCO₃**) **Cathode (Ag) H2O CO² H+ H+ CO² K + OH-HCO³ - CO³ 2- O2 H+ CO² K + OH-HCO³ - CO³ 2- CO** $\Phi = 0$ $\phi = -V_c$ • Membrane is implemented as fixed space charge • Stationary conditions are investigated

 $\mathbf{x}_{\mathbf{a}}$ **x**_m **x**_c

CO

- ΔФ^d

 $x=x$ ^a

x=x^m

x=x^m

0

Anode

(Pt)

0

y

H

Model: main equations

Anode – Cathode domains

Tertiary Current Distribution (TCD) – Electrochemistry module

Anode – Cathode boundaries

Tertiary Current Distribution (TCD) – Electrochemistry module

• *Kinetics*

Butler-Volmer Equation: $j_{partial} = j_0 \left[C_R exp \left(\frac{\alpha_a F}{RT} \right) \right]$ $\left(\frac{\alpha_a F}{RT}\eta\right)-C_{OX} exp\left(-\frac{\alpha_c F}{RT}\right)$ $\frac{\lambda_C T}{RT} \eta$

• *Electrochemical reactions*

Membrane Domain

Secondary Current Distribution (CD) – Electrochemistry module

• *Ohm's Law*

No significant concentration gradients are expected in the membrane

$$
i_m = -\sigma_m \Delta \phi_m
$$

$$
N_{H^+} = \frac{i_m}{F}
$$

 \overline{F}

• *Donnan potential*

Required to let TCD and CD interfaces interact

$$
\phi_m = \phi_e - \phi_d
$$

$$
\Delta \phi_d = \frac{RT}{F} ln\left(\frac{[H^+]}{c_m}\right)
$$

Results #1: Cell length L

11

Solar-driven CO_2 reduction: Experiment

Power matching requires a suitable match between the voltage-current points of both PV and EC modules. The PV is made of a module of 6 Dye-Sensitized Solar Cells

- \cdot I_{op}=8.6 mA (approx. 3.4 mA/cm2)
- $V_{op} = 3.1 V$

•
$$
FE_{co} = 82\%
$$
, $FE_{H2} = 18\%$
\n
$$
\begin{bmatrix}\n\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots\n\end{bmatrix}
$$

Solar-driven CO_2 reduction: Model

Step 1: Define the mathematical model for the solar cell

$$
I = I_{ph} - I_0 \left[exp\left(\frac{V + IR_s}{nV_t}\right) - 1\right] - \frac{V + IR_s}{R_{sh}}
$$

Step 2: Fit the experimental data and retrieve the parameters

Solar-driven CO_2 reduction: Model

Step 3: implement the mathematical equation in COMSOL and perform the time-dependent simulation

Solar-driven CO_2 reduction: first results

- A comprehensive model for the $CO₂$ electro-reduction is proposed, validated through experimental results
- The photovoltaics module is implemented through its governing equation
- More complex electrochemical cells will be implemented (e.g. Flow Cells)
- Optimize the model to be predictive for PV-EC performance under different incident light conditions (*e.g.* cloudy weather)

Thank you for your attention!

Experimental set-up

- Batch cell + electrolyte recirculation
- Catalyst: Ag NPs
- Electrolyte: 0.1M $KHCO₃$
- L_1 = 1.2 cm ; L_2 =0.5 cm
- Nafion membrane

Results #0: Cathode-Height dependancy

The y-dependancy can be safely ignored.

All the data are reported as the average across the cathode height.

Results #2: inflow velocity $u_0 \omega$ L=0.25 cm

Dependancy on flow velocity is more pronounced on higher voltages. The reason is related to the fact that higher $CO₂$ feed rates is more impactful when there are higher rates of carbon dioxide comsuption.

Results #3: L=0.25 cm, u_0 =0.067 m/s @ V= 3 V, 4 V

Results #2: inflow velocity $u_0 \omega$ L=0.25 cm

Results #4: L=0.25 cm, u_0 =0.067 m/s

 $\omega = x_{\text{cathode}}$ ω membrane surface

