

Architecture of a thermomechanical-optical model of a laser amplifier for laser fusion applications

G Friedman¹², G LeTouze¹², B LeGarrec¹², G Cheriaux¹ , D Hammond¹ , C Paradis¹²

¹Focused Energy GmbH - Darmstadt, Germany + NorCal, USA ²*Pulsed Light Technologies GmbH – Leipzig, Germany*

22/10/2024

IFE Breakthroughs have burst open the door for Commercial Laser Fusion Power

FOCUSED ENERGY

Our Fusion Approach – Direct-Drive Compression with modern Inertial Fusion Energy (IFE) Lasers

The Focused Energy Roadmap

OCUSED ENERGY

Our Lasers: Cutting-edge light sources and cooling architectures, yet to be seen at scale on existing IFE systems

Ion-Doped Glass/Crystal/Ceramic with Active Cooling

Laser Material | | IFE Laser Amplifier Elements | | Pump/Excitation Source

Flashlamps or diode arrays

Diode or Flashlamp Arrays

Amplifier Thermo-mechanical-optical behavior drives laser quality

Effect 1: Wavefront and Focusability

- \rightarrow Amplifier Wavefront or Optical Phase Distortion $S(x,y)$
- $S_{ray} = \oint n * \vec{r} \rightarrow ds = r * dn + n * dr$
	- Sum of index (r*dn) and material path (n*dr) changes
	- $n_{ij} = n_0 + \frac{\partial n}{\partial T}$ $\frac{\partial n}{\partial T} * \Delta T(\vec{r}) + \sum \left(\frac{\partial n_{ij}}{\partial \sigma_{kl}} \right)$ $\left.\partial\sigma_{kl}\right/_{ijkl}$ * $\pmb{\sigma}_{kl}(\vec{r}%)_{ij}^{(n)}(\vec{r})_{ij}^{(n)}(\vec{r})_{ij}^{(n)}(\vec{r}%)_{ij}^{(n)}(\vec{r})_{ij}^{(n)}(\vec{r}%)_{ij}^{(n)}(\vec{r}%)$
		- 3x3 Index Tensor based on Polarization (ij)
- \rightarrow The Index Sources $r * dn$
	- Stress-Induced Refractive Index Changes: $\sum_{n=1}^{\infty} \left(\frac{\partial n_{ij}}{\partial x_{ij}} \right)$ $\left.\partial\sigma_{kl}\right/_{\left\{ jkl\right\} }$ * $\pmb{\sigma}_{kl}(\vec{r}%)_{ij}^{(n)}(\vec{r})_{ij}^{(n)}(\vec{r})_{ij}^{(n)}(\vec{r}%)_{ij}^{(n)}(\vec{r})_{ij}^{(n)}(\vec{r}%)_{ij}^{(n)}(\vec{r}%)$
		- Thermal stress
		- Mechanical Mounting
	- Thermally-induced Refractive Index Changes $\frac{\partial n}{\partial x}$ $\frac{\partial n}{\partial T} * \Delta T(\vec{r})$
- \rightarrow The Pathlength Sources $n * dr$
	- CTE Expansion
	- Index- and CTE-Induced Focusing \rightarrow New Ray Paths

How does wavefront effect laser quality?

- Optical techniques can only remove a portion of the distortion
- Residual phase reduces size of the final focus \rightarrow Lower Intensity

Amplifier Thermo-mechanicaloptical behavior drives laser quality

Effect 2: Depolarization and birefringence

 \rightarrow Polarization - $\vec{P}(x,y)$

• Local Stress Tensors rotate local Optical Tensors, often
aligning themselves with the Stress Principle Axes aligning themselves with the Stress Principle Axes

- Index Tensor (n) = Stress-Optic (B) * Stress Tensor (σ)
- Local Index Tensor misalignment with Polarization Axis will cause Local Birefringence and Depolarization
- Secondary Beams can result from this misalignment
- Secondary Beams will not survive optical propagation and is lost energy (Lower Fusion Driver Efficiency)

How does Polarization effect laser quality?

- Laser is optimized for single polarization
- Other polarizations will be quickly removed --> Energy loss

Segregated Solver to capture complete chain of events from pump to propagation

The solution leverages built-in modules with encapsulation of benchmarked laser codes and manufacturing data

FOCUSED
ENERGY

Code benchmarking relative to known performance of existing actively-cooled lasers by former system experts in-house

CNE400 Pump Laser – Saclay, FR

Flashlamp-Pumped – 400J @ 1054nm

L4-Aton Laser – Prague, CZ *Flashlamp-Pumped – 1500J @ 1054nm*

 \rightarrow Each laser equivalent to 1 of the N Lasers required to compress the fuel pellet for a Laser Fusion Power Plant

 \rightarrow Next generation of Amplifiers builds upon and extends the performance

Thanks for your attention and interest in Fusion Energy!

We are happy to field any questions or comments at this time

Interested in joining one of our expanding teams?

Reach out or go to *www.focused-energy.world* and Select "Careers" to see active opportunities. Spontaneous applications also welcome!

