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Abstract It is common knowledge to readers of these COMSOL
conference proceedings that COMSOL, as well as other established
CFD codes, produces unstable numerical solutions of the Navier-
Stokes (NS) equations without ”consistent stabilization” and/or
”inconsistent stabilization” enabled. Indeed, the ability to dis-
able the stabilization method in COMSOL is unique among most
commercial CFD codes; i.e., it is “hidden” as if stabilization is
not even present!

With aim to replace this approach of added stabilization (per-
haps a code option in the future) a novel new theory [1,2] is sum-
marily presented in this paper denoted ”Truncation Error Anni-
hilation” (TEA). The TEA theory provides a new algorithm that
mathematically annihilates the algebraic instability mechanism
via continuum equation systems alteration with analytically de-
rived Reynolds number dependent cubic nonlinear tensor prod-
uct calculus functionals. The need for numerical stabilization ob-
viated, tridiagonal stencil equivalent CFD algorithm discretiza-
tion of theory modified NS/RaNS equations are directly coupled
into the unchanged COMSOL ”High-Mach Number Flow” (HMN)
equation system following standard procedure for equation-based
modeling. Consequently, TEA theory enables an algebraically
stable generation of resolutely oscillation-free O(h4) Taylor-series
accurate state variable distribution that is monotone to iteration
convergence digit on any discretization.

TEA is applicable to the entire class of NS/RaNS physics, but
the choice here is to focus on transonic and supersonic compress-
ible flows. This choice of flow regime is primarily due to the
challenge in solving at high-fidelity meshing level, and a require-
ment of smooth monotonicity, while retaining pure Galerkin in-
terpolation test functionality, with inclusion of accurate shock
present flows. Secondarily, both authors have sustained efforts
on this issue after the time of primary-author Ph.D. dissertation
[3].

The approach is simple for the COMSOL construct. Both con-
sistent and inconsistent stabilization are disabled entirely by ”mouse
click” in the option box of the code graphical user interface
(GUI). Simultaneously, the TEA terms are added through direct
option within the COMSOL model tree in weak form as contri-
bution additions for all the state variable equations, written in
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non-conservative form, on pressure, velocity, temperature, and
turbulent eddy viscosity. These equations solve for the conser-
vation of mass, momentum, energy, and turbulent eddy viscosity
closure using Spalart-Allmaras turbulence model. TEA theory is
presented in non-dimensional form, so the input for solving us-
ing COMSOL in both dimensional form on one problem, and non-
dimensional form on another problem, are consistently applied
to established benchmark cases and demonstrated to yield valid
results.

Two classic validation model problems are presented from a
subset of the suite of challenge problems in recent AIAA High-
Fidelity Workshop Proceedings [4]. The Sajben-diffuser prob-
lem is also included in the COMSOL application library (CAL).
The dimensional form inputs were improved based on NASA
references to archival data for geometry and test data. A direct
comparison with COMSOL consistent stabilization results is also
included for the Sajben-diffuser with all other solution features
being equal (mesh, inputs, solver, etc.). Results for a Smooth-
Bump Transonic flow AIAA challenge problem, defined by non-
dimensional input, are also presented. Included is a complete
history of COMSOL adaptive mesh procedure, along with classi-
cal energy norm convergence data.

1 Introduction/Foreword

After retirement from ORNL on 1/1/2018, a primary goal for
Jim was to investigate features of COMSOL that were out of scope
during his full-time working career. Primarily, COMSOL equation-
based modeling, but other areas such as the relatively new appli-
cation builder, and perhaps even the physics builder were fea-
tures seldom used. Focusing on the equation-based modeling
first, an obvious route to take was to repeat the equations used
in his PhD dissertation [3] (FORTRAN code); indeed, a goal since
FEMLAB v3.0 at the onset.

Simultaneously, a primary goal for AJ after his retirement
from UTK teaching and research, has been to compose a mono-
graph summarizing his many years of research on finite-element
based CFD, and also to lay the groundwork for future research
by others. When AJ learned of Jim’s post-retirement goals, he in-
vited Jim to consider including valuable improvements in CFD
algorithms after his graduation over a quarter century earlier. A
renewed collaboration began.

The decision to collaborate turned out to be very rewarding.
For Jim, not only would the goal of learning COMSOL equation-
based modeling be achieved, but the knowledge and implemen-
tation of TEA theory has resulted in much-improved CFD solu-
tions. For AJ, our collaboration has expanded the scope of the



monograph to include significant improvement to the compress-
ible NS contribution and utilization of COMSOL for TEA theory
implementation.

Our goal for this paper is to share with the reader the sig-
nificance of TEA theory toward high-fidelity, monotone, stable,
CFD solutions of superb quality. TEA theory is applicable to
all CFD problem types. In this paper, we demonstrate and val-
idate for compressible flows. We hope that TEA theory might
be directly included into COMSOL as an option or replacement for
“consistent stabilization” freely available as “open-source” tech-
nology.

2 A Synopsis of TEA Theory Applied to Compressible
Navier-Stokes Equations

A complete discussion of the TEA theory is not possible here due
to conference constraints, but can be found in the cited references[1,
2]. We present a short summary herein. A generalized form of
multi-dimensional NS equations is written as

f j(q,xi)
∂q
∂xi

− ε(xi)
∂ 2q
∂x2

j
= 0+O(h2), (1)

where f is the flux vector corresponding to the equation index
j (mass, momentum, energy), i is the spatial index (x,y,z), q is
the j equation state variable {ρ,m j,E}T in conservative form or
{p,u j,T}T for the non-conservative form used in the COMSOL
CFD module for high Mach-number compressible flows. Note
also that the term O(h2) used in equation 1 denotes the 2nd-order
accurate discretization error, where h denotes the element mea-
sure (area for 2D), that is omnipresent in essentially all CFD
codes presently used; including COMSOL.

A rigorous expansion of each of the nodal expressions (after
finite-element assembly) are utilized to arrive at the O(h2) error
terms, and are then evaluated. From these nodal expressions, an
alteration is quantified to evaluate the truncation error via cu-
bically nonlinear functionals defined in most legacy NS finite-
difference and/or finite-element 2nd order algorithms. Utilizing
tridiagonal stencils [1,2], the truncation error is then annihilated
as a result of this rigor, yielding an altered expression of the form
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∂q
∂xi

− 1
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− Reh2

12
fk(q,xi)

∂
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f j(q,xi)

∂q
∂x j

]
= 0+O(h4), (2)

wherein, a new index k is created on the equation-system ar-
ray, the Reynolds-number notation is symbolic as the result of
conversion to non-dimensional form for all the equations, and
the truncation error is now O(h4),and therefore, the O(h2) error
is annihilated! By symbolic, for example, the non-dimensional
constant would be RePr for the energy equation, or another quan-
tity depending on the equation evaluated. Note that any equation
containing the higher-order viscous terms, such as turbulence
model equations, is eligible for the TEA alteration operation.

As a simplification, we only consider the diagonally domi-
nate terms; i.e., j = k = 1,2 in 2D for this paper. From Equation
2, the first and second term are the original, unaltered equation
terms, whereas the third term is the alteration and is all that we
focus on in this analysis. Consideration of the effects of includ-
ing the off-diagonal terms ( j ̸= k) would be an excellent choice

for further research. If we limit our analysis to 2D, and j = k
terms only, the TEA terms become

· · ·+ Reh2

12

{
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= 0+O(h4). (3)

Further simplification yields the essential terms needed for 2D
TEA theory

· · ·−
Re∗

(
he
m

)2

12

[
u2 ∂ 2q

∂x2
1
+ v2 ∂ 2q

∂x2
2

]
= 0+O(h4). (4)

Specific to the COMSOL HMN compressible flow subset of the
CFD module using Spalart-Allmaras turbulence model, the array
of state variables is q = {p,u,v,T,µT}T , and the corresponding
non-dimensional parameter is
Re∗ = {τp,

Re
µtot

, Re
µtot

, RePr
ktot

,
σµ Re
νtot

}T respectively. Note the follow-
ing: (1) the subscript tot denotes the “total” quantity for turbulent
flow; i.e., µtot = µ + µT , (2) all variables shown above are di-
mensionless form, (3) the parameter τp is discussed further in the
next section, (4) the variable he denotes the element “measure”
or in this case for 2D, the element area and is not to be confused
with the built-in COMSOL quantity h which is a representative el-
ement length; i.e., the TEA theory requires the element length
in 1D, area in 2D, and volume in 3D, and (5) the parameter m
denotes the element order (1,2,3) for (linear, quadratic, cubic),
respectively.

3 Application of TEA Theory into COMSOL
Equation-Based Modeling

Near the end of the previous section, starting with Equation 4,
we introduce the implementation of the TEA theory terms into
the COMSOL HMN flow equations. This section provides all the
details to complete the transition to using TEA theory.

3.1 To Be or Not to Be: Dimensionless or Not

Working in dimensionless form is ideal for theory and algorithm
development. But, most COMSOL users prefer to use dimensional
form. Further, COMSOL requires the user to be familiar with using
dimensionless form in order to enter the correct information for
the input stream. Regardless of the choice, TEA theory is very
simple to manage both dimensionless and dimensional methods
of working with COMSOL.

The TEA theory is written in dimensionless form with the pa-
rameters Re, Pr, etc., appearing directly in the equations shown.
If the user decides to work in dimensionless form, he designates
that option in the model tree, and then consistently processes all
the variables, input and output, to be dimensionless. For exam-
ple for the HMN (non-conservative form) equations, p∗ = p/po,
ū∗ = ū/uo, T ∗ = T/To. In addition, specific variables such as dy-
namic viscosity, and thermal conductivity (which naturally ap-
pear on the diffusion terms), must be input, in addition to di-
mensionless, as divided by the Re and or Pr where appropriate.
For example, µ∗ = µ

µoRe , and k∗ = k
koRePr for the dynamic vis-

cosity and thermal conductivity, respectively. If this is done con-
sistently, then the TEA terms may be input as written.
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Alternatively, most users of COMSOL will create their model
in dimensional form. The input stream will be created as normal,
and a very simple change is made to the TEA theory terms shown
in Equation 4: (1) make sure all the variables are in dimensional
form (which they should be), and (2) drop the Re and Pr from
the equations (or alternatively set to unity).

To add the TEA terms in dimensional form to the COMSOL
model tree, the following steps are taken: (1) uncheck all the
stabilization (both consistent and inconsistent) options built in
to the physics provided (override the default), and (2) add the
following entries as separate “weak contributions” to the HMN
physics settings:

conservation of momentum in the x-direction (q2 = u):

-(h_2d/order)^2/12/mu_tot*
(test(ux)*u^2*ux+test(uy)*v^2*uy)

conservation of momentum in the y-direction (q3 = v):

-(h_2d/order)^2/12/mu_tot*
(test(vx)*u^2*vx+test(vy)*v^2*vy)

conservation of energy (q4 = T ):

-(h_2d/order)^2/12/k_tot*
(test(Tx)*u^2*Tx+test(Ty)*v^2*Ty)

constitutive equation for the Spalart-Allmaras turbulence model
(q5 = µT ):

-(h_2d/order)^2/12*hmnf.sigmanu/nu_tot*
(test(nutildex)*u^2*nutildex
+test(nutildey)*v^2*nutildey)

Note the following: (1) h 2d denotes the he variable dis-
cussed above for the 2D element area (see COMSOL built-in func-
tions, (2) order is a parameter specifying the element order m
discussed above, (3) tot denotes the total of fluid and turbulent
summation, (4) the test function will link the weak contributions
to the appropriate equations/terms in the HMN physics settings
automatically.

Also note that the conservation of mass contribution, through
the (q1 = p) variable, has not been defined from the TEA the-
ory input stream (yet). This important detail is discussed and
accounted for in the next subsection.

3.2 A Special Case: Continuity Equation

Based on the theory, a fundamental requirement of the TEA
method is that a viscous term must be present in order to be
valid. This is because the theory is based on the alteration of the
rigorous transformation from the base Equation 1 to the altered
Equation 2. Without the viscous terms, the altered TEA terms
would not be obtainable. The continuity equation is an excellent
example of an equation that does not contain a viscous term. An-
other example is the momentum equation that assumes inviscid
fluid; which in itself is theoretical and not physically possible.
In order to obtain a solution of an inviscid problem using TEA
theory, one must solve the problem using the viscous form of the
equations and apply a slip-wall boundary condition, and utilize
a Reynolds number as high as possible for a given mesh density.
We demonstrate an inviscid problem solution later in this paper.

One method to get around the issue of not being able to apply
the TEA theory to the continuity equation is to utilize a legacy

O(h2) method on the continuity equation. We have done this for
the HMN problems demonstrated herein, but found that it was
not as powerful as what we saw in the TEA-enabled equations
for momentum, energy, and turbulence model coupling. Further,
we found that a legacy O(h2) solution compared to the improved
TEA O(h4) solution was not as accurate, and did not perform as
well in solving for a converged solution. The convergence rates
for the O(h4) are significantly improved over the O(h2) solu-
tions. Therefore, we needed to incorporate the TEA theory into
the non-viscous termed continuity equation in an different man-
ner.

Based on the pattern of the other equations already altered
to solve with the TEA method, it was decided to create a “fake”
viscous term in the continuity equation as written and applied to
the COMSOL HMN equations that solve for pressure of the form:

− 1
τp

[
∂ 2 p
∂x2 +

∂ 2 p
∂y2

]
= pε , (5)

where τp is a parameter added to obtain consistent units for the
solved continuity equation, with units of time, and an arbitrary
magnitude that can be used as a control mechanism. The value
of pε is driven as small as possible toward zero to minimize the
effect of the added term by making the value of τp as large as
possible. The entire appearance of Equation 5 is that of a Lapla-
cian equation (pure diffusion) with the inverse of an arbitrary
parameter used as a multiplier of negative value.

In order to annihilate (remove) the O(h2) truncation error
from the computed value of pε , an additional TEA term is also
added to provide O(h4), in a similar manner to the other equa-
tions solved, to the continuity equation discrete formulation of
the form [HMN 2D continuity on p]:

· · ·+
τp

12

[
u2 ∂ 2 p

∂x2
1
+ v2 ∂ 2 p

∂x2
2

]
= 0+O(h4). (6)

From Equations 5 and 6, the inputs to the COMSOL model tree
also in the weak formulation are:

conservation of mass fake viscous term (q1 = p)

+h_2d/order/tau_p*(test(px)*px+test(py)*py)

conservation of mass fake TEA term (q1 = p):

-(h_2d/order)^2*tau_p/L_p^2*
(test(px)*u^2*px+test(py)*v^2*py)

Note the following: (1) in the fake viscous term (h 2d/order)
is raised to a power of 1 not 2, (2) the parameter L p has units
of meters and a value of unity and is only there to provide the
correct set of units to be included into the continuity equation
consistently, (3) the method of using this fake continuity viscous
term is not yet incorporated into the TEA theory [1,2], and (4)
we have found that the performance of this approach with the
compressible flow continuity equation to be superior.

4 Validation

In a previous COMSOL conference[5], we validated the TEA
theory (FaNS) on 1d compressible problems; including “viscous
Burger’s equation”, and “Riemann Shock Tube”. At that time, a
legacy TWS O(h2) method was implemented to substitute for the
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O(h4) TEA method for the continuity equation solving for den-
sity. An interesting exercise would be to go back to the 1D com-
pressible NS equations to implement the “fake viscous” TEA
O(h4) terms and see the improvement.

In this 2D validation of TEA theory, we present two clas-
sic problems that have been investigated by many researchers
worldwide. Indeed, we have been active with an AIAA group
concentrating on state-of-the-art “High-Fidelity CFD Verifica-
tion” and both of the problems presented here were also in-
cluded in the manuscript that was produced as a result of that
collaboration[4]. The COMSOL model files are provided for the
user with the conference proceedings.

4.1 Transonic Smooth Bump

The first problem presented is called the “transonic smooth bump”
or “smooth bump”. This simple problem describes a subsonic
flow of air across a parallel plate surface, with a smooth bump
over the bottom surface with a specified shape. The flow is as-
sumed inviscid and enters on the left at Mach 0.7. The fluid con-
ditions are described in dimensionless terms and are likewise
setup dimensionless in COMSOL. The ambient temperature and
pressure are set to 1.0 and 1/γ respectively. The input temper-
ature and pressure set set to the total temperature and pressure
respectively obtained from the following equations using ideal
gas relationships:

To

T∞

= 1+
(γ −1)

2
M2

∞ (7)

po

p∞

=

[
To

T∞

][ γ

(γ−1)

]
(8)

The outlet pressure is also assumed fixed at ambient conditions.
The top and bottom edges are set to no-slip walls. The geometry
is specified from (−1.5 ≤ x ≤ 1.5) and (0.0 ≤ y ≤ 0.8). Three
edges are constant (x =−1.5,y = 0.8,x = 1.5) representing left,
top, and right, respectively. The bottom edge is defined by the
relationship:

y = 0.0625e{−25x2},(−1.5 ≤ x ≤ 1.5). (9)

The geometry and boundary conditions are depicted in Figure
1. Note this problem is very similar to the “3D Euler Bump”
problem given in the CAL. The flow produces a shock with

Fig. 1 Transonic smooth bump geometry and problem definition.

peak Mach number near the bump surface (NNE side, about 2
o’clock). Further, the theoretical total enthalpy should be con-
stant throughout the domain; even across the shock. The object

of the challenge is two fold: (1) predict and tabulate the precise
shock location on the bump surface, and (2) produce a result as
near to the theory as possible; in particular, across the shock.

This problem ran very well on COMSOL with TEA theory im-
plemented. We produced results using linear, quadratic, and cu-
bic finite-element basis functions as shown in the attached Figure
2. Note the overlay zoom along the bump wall edge is required to
visualize any difference in the results! Perhaps the most impres-

Fig. 2 TEA O(h4) transonic smooth bump Mach number surfaces compar-
ing linear, quadratic, and cubic finite-element basis discretization.

sive finding was how well the adaptive mesh solver worked with
this problem. As many as 17 adaptations from extremely coarse
up to extremely fine mesh at the last adaptation where the mesh
density was highest about the shock. Both the error in energy
norm and error in total stagnation enthalpy L2 norm were com-
puted to evaluate the solution quality. This is depicted in Figure
3 where the error in energy norm is colorized by averaging over
each element using COMSOL “elemavg” built-in operator using
the error in energy norm evaluation 0.5▽2 (δT ). The integrated

Fig. 3 TEA O(h4) transonic smooth-bump energy norm distribution as a
function of adaptive mesh and basis function (note: colorized as average
energy norm per element)

error in energy norm was also evaluated and plotted to compare
against convergence theory as shown by Figure 4. Note that the
slope of the linear and quadratic log-log curves are both equal
to 4 due to the overriding O(h4) performance of the TEA terms
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in the applicable range. The final plot of smooth-bump results,

Fig. 4 TEA O(h4) transonic smooth-bump adaptive-mesh solution, energy-
norm convergence rate study, variation in mesh density (Mn = 0,17), and
finite-element discretization (p = 1,2,3).

Figure 5, is a collage of interesting results that requires close
examination. Part (a) shows the final adaptive mesh for the cu-
bic basis. In addition to the high mesh density about the shock,
the COMSOL adaptive algorithm also refined the inlet edge region,
and a significant portion of the bump edge. The total number of
cubic elements for this case was 134776. Part (b) shows the to-
tal enthalpy distribution. The theoretical value for the stagnation
enthalpy is a constant, Ho = 3.843, and most of the distribution
is very near this quantity. However, in the shock vicinity there
is a significant dip down to Ho ≈ 3.68. Part (c) shows a surface
plot of the pressure distribution. Of significance is the additional
plateau developed within the shock. Finally, Part (d) shows a
gray-shade surface plot of the Mach number distribution. Of sig-
nificance is the zero gradient in the normal direction for all the
edges, including the bump edge. This results in the maximum
Mach number being slightly inside the domain near the bump
edge.

Fig. 5 TEA O(h4) transonic smooth-bump collage of interesting results
(see discussion in the text).

4.2 Sajben Diffuser

The Sajben Diffuser problem is a widely analyzed 2D problem
for compressible flow that is included in the CAL. Several ref-
erences are provided in the application documentation that de-
scribe the problem in detail. In addition, long before COMSOL ex-
isted, the authors studied this problem, and results are included
in Jim’s PhD dissertation[3] completed on 5/1992. Most impor-
tantly, NASA has made available the geometry and test configu-
rations along with several groups of test data and CFD results of
the problem[6] after 1992.

The CAL was certainly a great place to start in building an
updated model for this research. There were many changes made
to improve on what was there initially. Some highlights of model
changes are:

– The geometry definition was changed to equation-based as
provided in the original papers. The original CAL model uti-
lizes an interpolation of individual points to create the ge-
ometry. This change provides a much smoother transitions
in the geometry regions and removes some unnecessary os-
ciallations in the solutions.

– All the comparison data available in the NASA archive is
utilized for comparison as opposed to a select few.

– The mesh design was completely changed to be more parameter-
based, essentially providing an extensive manually-generated
adaptive mesh solution.

– A short slip-wall entrance was added to provide a gradual
change from free flow, slip wall, to no-slip wall design in-
stead of a sudden no-slip wall change at the entrance.

– The COMSOL built-in consistent and inconsistent stabilization
options were completely disabled, and the TEA theory physics-
based terms are added as weak-form contributions. A special
case was also performed in the end to directly compare the
COMSOL consistent stabilization with TEA theory and is in-
cluded in these results.

– The logic to automatically run the weak-shock case, and then
restart/switch to the strong-shock case was removed. Instead,
the present analysis investigated only the more-difficult strong-
shock case by performing a sequence of 13 successive mesh
refinement cases.

– And finally, we modified and added most of the results set-
tings.

While the model was completely changed in many ways from
the original provided by the CAL, there are still many subtle
remnants of the original model still present.

The strong-shock settings were used as initial conditions. Be-
cause the model requires a boundary-layer mesh on the no-slip
walls, the adaptive mesh solver could not be used effectively.
It was tried several times, but just could not quite provide the
required fine mesh near the wall that was needed for the Low-
Reynolds Spalart-Allmaras turbulent model. Instead, a succes-
sion of parameter-based, manually-created mesh designs were
executed, where the steady-state results from the coarser mesh
was used as an initial condition for the next finer mesh to arrive
at a final steady state. A total of 12 mesh refinements were gener-
ated in this manner using the parameter-based design mentioned
earlier. The final mesh 13 yielded a total of 24,064,032 degrees
of freedom (dof) to be solved.

After the final mesh density steady-state was achieved us-
ing the TEA-altered equations, it was decided that it was impor-
tant to perform a direct comparison with the COMSOL unaltered
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original equation with the TEA terms disabled, and the con-
sistent stabilization re-enabled. In performing this direct com-
parison, it is very important to keep all the other variations in
the code consistent with the TEA-computed results. This was
performed by running one single case using the mesh-13 TEA-
altered strong-shock steady state as an initial condition, and then
restart with TEA turned off, and COMSOL consistent stabilization
(CCS) turned on, and then run to a new steady-state with the
same residual (ε ≤ 0.0002) stop criteria.

The first set of plots presented are 1D plots of the TEA-
enabled results for the final mesh-13 steady-state (SS). Figures
6, 7, and 8 compare the TEA-enabled result along 1D cut lines
for wall pressures, and shock-downstream velocity profiles (1
and 2). While not perfect, the deficiency is clearly due to the
turbulence model inherent shortcoming, and the COMSOL code is
producing an accurate result of the equations being solved. The

(a) top (b) bottom

Fig. 6 TEA O(h4) Sajben diffuser comparison with test data - strong-shock
wall pressure, top (left) and bottom (right).

(a) x
hth

= 2.882 (b) x
hth

= 4.611

Fig. 7 TEA O(h4) Sajben diffuser comparison with test data, strong-shock,
u velocity comparison, shock downstream locations x

hth
= 2.882 and 4.611,

(a) and (b) respectively, (1 of 2).

final 1D plot in Figure 9 presents a sequence of Mach number
cut lines of each mesh density solution 1-13. The cut lines are
taken at the point of maximum Mach number for mesh-13 along
the x direction. Note the legend showing color and line design
differences for each mesh density with highest-density mesh-
13 shown as a thicker black line. Two additional plots show a
zoomed view of the top and bottom regions capturing the conver-
gence of the peak toward the accuracy in Mach number. These
results clearly demonstrate the importance of significant mesh

(a) x
hth

= 6.340 (b) x
hth

= 7.493

Fig. 8 TEA O(h4) Sajben diffuser comparison with test data, strong-shock,
u velocity comparison, shock downstream locations x

hth
= 6.340 and 7.493,

(a) and (b) respectively, (2 of 2).

density in order to obtain the most accurate solution possible
(high-fidelity).

(a) maximum Mach number cut line (b) top zoom (c) bottom zoom

Fig. 9 TEA O(h4) Sajben diffuser 1D plots of maximum Mach number cut
line.

Figures 10, 11, and 12 show 2D plots of detail about the
shock region. Figure 10 is a comparison plot (TEA and CCS)
zoom surface plot, with contour line additions, of the transverse
(v) velocity in the shock region and an additional zoom overlay
of a critical region near the upper wall boundary layer interac-
tion. The left side, a) TEA, demonstrating smooth. monotone,
accurate solution, whereas the right side, b) CCS, demonstrates
an oscillatory, unstable, and inaccurate behavior in the narrow
shock region. Figure 11 is a comparison plot (TEA and CCS)
zoom sequence of surface plots of the fluid density (ρ) in the
shock region. Parts a) and b) are the TEA solution perspective
and direct view respectively, while part c) is a similar CCS solu-
tion perspective. Note the TEA density peak is, again showing,
smooth. monotone, and accurate solution; whereas, the CCS so-
lution, again, shows an oscillatory, unstable, and inaccurate be-
havior at the shock peak (requires additional zoom with the pdf
viewer to completely visualize). And finally, Figure 12 shows a
zoom view of the flow separation regions at both the top curved
wall, and bottom straight wall, where a shock-boundary layer
interaction occurs and causes the flow to form a subsonic re-
gion, and separate between the wall and the dominate-flow re-
gion downstream of the shock. The plot is segmented into four
parts (a-d) showing Mach number and transverse velocity (left
and right) and wall regions curved and flat (top and bottom)
respectively. The near-wall region produces the dominate eddy
viscosity from the turbulent model, and hence, is important to
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Fig. 10 TEA O(h4) Sajben diffuser comparison, transverse velocity (v),
shock-centric zoom w/ super-zoom snippet imposed: a) TEA O(h4), b) CCS
O(h2).

Fig. 11 TEA O(h4) Sajben diffuser compressible strong-shock flow density
alternate shock-centric views a) TEA O(h4), b) TEA O(h4), c) CCS O(h2)

obtain accuracy and high-fidelity in order to obtain accurate so-
lutions.

5 Conclusions and Next Steps

We have presented a short summary of TEA theory which will
annihilate O(h2) truncation error, while retaining much lower
O(h4) truncation error for CFD solutions. The implementation of
TEA theory has been presented using equation-based weak-form
coding into the normal COMSOL input stream. Two high-fidelity
solutions have been presented and compared to the traditional
COMSOL consistent stabilization method.

In addition to publication of the complete TEA theory via the
referenced monograph, our next step is to implement/demonstrate
a consistent conservative form, along with Spalart-Allmaras tur-
bulence model, of the compressible NS equations using COMSOL
equation-based modeling. We believe this could also provide
even higher accuracy for compressible flows along with increased
Newton algorithm jacobian consistency for improved conver-
gence.

We hope that COMSOL might directly incorporate TEA theory
into their code for general availability to the user community,

Fig. 12 TEA O(h4) Sajben diffuser, strong-shock, turbulent boundary layer
interaction, shock-centric zoom: a) Mach number in the top wall region, b)
transverse velocity (v) in the top wall region, c) Mach number in the bottom
wall region, and d) transverse velocity (v) in the bottom wall region.
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