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Abstract 
The integration of machine learning (ML) techniques into geophysical exploration and underwater mapping has 
emerged as a transformative approach for interpreting complex sensor data. This paper presents a comprehensive 
framework for using COMSOL Multiphysics to develop and validate potential field models—specifically gravity 
and magnetics—in maritime environments. These models are designed to support machine learning applications, 
particularly for enhancing the predictive capabilities of uncrewed underwater vehicles (UUVs). In the maritime 
context, accurate modeling of gravity and magnetic fields is crucial for detecting and characterizing underwater 
objects, ranging from low to high magnetic targets such as unexploded ordnance (UXO), shipwrecks, and 
geological features. We have developed a sandbox environment using COMSOL Multiphysics that allows for the 
precise creation and manipulation of complex geophysical sensing. This environment enables the detailed 
simulation of potential fields incorporating various target properties and environmental conditions to generate 
synthetic datasets for ML training. 
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Introduction 
Measurements of magnetic anomalies caused by 
ferromagnetic objects is a widely used technique 
[1], especially with the rapid advancement of 
geomagnetic technologies [2], [3]. In the maritime 
context, accurate modeling of potential (gravity and 
magnetic) fields is important for detecting and 
characterizing underwater objects [4], [5], [6], [7], 
ranging from low to high magnetic targets, such as 
unexploded ordnance (UXO), shipwrecks, and 
geological features [8], [9], [10], [11]. 
 
Because of the constant change in Earth’s magnetic 
field, it is difficult to make predictions of field 
states into the distant future based on observations 
alone. Additionally, much of the surface of the 
earth is not magnetically mapped at a fine enough 
resolution for anomaly detection. Adequate 
measurement of needed data may not be 
possible[12], calling on simulation methods to fill 
the data gap. Magnetic field modeling may be taken 
as a complementary approach to methods relying 
on field data collection. Moreover, simulation for 
training machine learning (ML) models offers more 
robust methods to detect, classify, and even localize 
the source of magnetic anomalies [14], [15]. 
 
We have developed a framework for magnetic field 
modeling using high resolution vector data from 
magnetic sensors. The framework is based on a 
sandbox environment using COMSOL 
Multiphysics that allows for the precise creation 

and manipulation of complex geophysical targets 
and observation platforms. Our environment 
enables the detailed simulation of potential fields 
incorporating various target properties and 
environmental conditions to generate synthetic 
datasets for subsequent algorithm development 
using ML approaches. 

Experimental Set Up 
Our simulation model started with the definition of 
target object physical properties and the spatial 
configuration. Low, medium, and high magnetic 
targets were systematically introduced into the 
simulation space, and their interactions with the 
surrounding medium calculated. The gravity and 
magnetic anomalies generated by these targets were 
subsequently recorded from various UUV 
simulations, providing a rich dataset capturing the 
nuances of potential field variations in different 
scenarios. 
 
To validate our models, we employed a 
combination of theoretical predictions and 
empirical data. The theoretical framework was 
couched in well-established geophysical principles, 
ensuring alignment between synthetic data and 
expected physical behaviors. 
 
Empirical validation was conducted using field 
measurements from controlled maritime 
environments where known targets were surveyed 
with high-precision gravity and magnetic sensors. 
Experiments for empirical validation were 
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conducted by drawing a sensor platform between 
two points across the water's surface, about 70 
meters using a winch system to keep the sensor 
platform well constrained to its linear path. This 
process was repeated for several trials per target, 
and for several target types and depths. Data was 
logged by various sensors including Magnetic, 
IMU, and GPS enhanced with RTK (Figure 1a). 
The minimization between the simulated B field 
and empirical data is the metric we hope to 
minimize (Figure 1b). 
 

 

 
Figure 1. (a) Low magnetic test platform hosting the 
sensor array. The platform travels along a tension line 
under which magnetic targets are placed. (b) Optimized 
analytic modeling of observed data.  

Methods 
For our modeling process, we used the Magnetic 
Fields, No Currents interface in COMSOL 6.2, 
allowing the Poisson equation for magnetostatics: 
–∇ ⋅ (μ0∇Vm – μ0M0) = 0 to more easily be 
incorporated into simulation runs. Figure 2 shows 
the modeled isopipe targets which are thin, hollow 
cylinders of 12 in or 24 in length. Model parameters 
are given in Table 1. 

 
Figure 2. Hollow isopipe metallic targets. Targets are 
(from left to right) orthogonal, vertical, and parallel to 
the cut lines shown. 
 

Table 1: COMSOL Model Parameters 

mur_pipe 50 or 100 or 200 Relative permeability 

H0 46353.6[nT] Local geomagnetic 
field 

Incl 58.77291[deg] Local inclination 

Decl -4.28[deg] Local Declination 

xx 12 or 24[in] Length of pipe 

pir 4.026[in] Pipe inner radius 

por 4.5[in] Pipe outer radius 

COMSOL Simulations 
Figure 3 a-d shows sample total magnetic field (i.e. 
the scalar field) as well as the vector components of 
the modeled B field as a sensor array moves 1m 
over a series of 12 in pipe targets along the cut lines 
shown in Figure 2. 
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Figure 3a-d. Simulated magnetic anomalies over a 
12 in pipe target at various orientations. From top 
to bottom: Total B field, Bx, By, and Bz. Bx is not as 
accurate due to the model geometry. In both cases 
the relative permeability was 100. 
 
As the sensor array moves up to 5m above the 
targets, the magnetic anomalies observed decrease 
significantly as expected. This is shown in Figure 4, 
where the total modeled B field is shown for a 
sensor array 1m and 5m above 24 in targets. We 
observed the modeled data drops from ~1,000nT to 
~100 nT. 

 

 
Figure 4a-b. Total B field over 24 in targets. The 
height of the sensor array is 1m (top), and 5m 
above the target (bottom). In both cases the relative 
permeability was 200. 
 
The COMSOL models accurately reproduced static 
magnetic anomaly data due to the interaction of the 
local geomagnetic field with ferrous targets of 
various sizes and geometries. These models 
included material polarization due to the inducing 
field and self-demagnetization effects. 

Machine Learning Models 
We now use Machine Learning (ML) techniques on 
data generated by our COMSOL simulation 
models. Due to the sequential nature of the 
simulated data and because simulations generated 
continuous observations, the machine learning 
approach included Long Short-Term Memory 
(LSTM) network, regression, tree boosting, and 
Deep Neural Network (DNN) models. The LSTM 
model was for assessing prediction performance 
when running on simulated sensor sequence data, 
thus estimating the effectiveness of using simulated 
data as a data augmentation process for potentially 
supplementing observational data. The other ML 
models were chosen for confirmation of simulation 
data patterns. For the Boosting technique, sensor 
readings were dichotomized to produce a label 
reflecting above and below the unsigned reading 
mean. For predictors, target permeability, target 
aspect ratio, and the speed of the UUV were used 
for training the boosting ML model. 
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Models were run on simulated data only. LSTM 
models were run using an embedding sequence of 
10 data points from a total of over 500,000. 
Confirmatory ML models were run using a 1m, 3m, 
and 5m simulated vertical distance between the 
sensor and target. A regression model and a DNN 
model were trained using the simulated vector 
components of the B field as predictors. The DNN 
model architecture comprised a flattened input 
layer, two fully connected layers with 20 nodes 
each, a dropout layer set to 0.5 after each fully 
connected layer, and an output softmax layer. The 
DNN model was run using the ReLU activation 
function, the Adam optimizer, a batch size of 50, a 
dropout rate of 0.14, and a learning rate of 0.0001. 
The regression model was constructed to test how 
effectively data sensor total field from simulation of 
a 12 in diameter target predicted the simulated total 
field data from a 24 in diameter target. The DNN 
model was trained for 1,000 epochs. 
 
The models above served as the foundation for 
training advanced ML algorithms, with a particular 
focus on sequence data. ML models are well-suited 
for sequence data [16], [17], [18], such as time-
series analysis, making them ideal for interpreting 
UUV integrated sensor data as they navigate 
underwater. The synthetic datasets generated from 
our COMSOL models provide diverse training 
examples, allowing ML models to learn the 
complex temporal relationships and signature 
patterns associated with different target types. 
 
Each ML model was assessed for its ability to 
accurately classify and predict sensor signatures 
under two sensor-to-target distances. By leveraging 
the robustness and versatility of COMSOL 
Multiphysics in combination with cutting-edge ML 
techniques, we aim to develop predictive models 
that significantly enhance the detection and 
characterization capabilities of UUVs. 

Machine Learning Regression Model 
Governing Equations 
Of the ML methods used, only regression may be 
best represented by a closed-form equation. The 
LSTM and DNN techniques were based on 
architectures. The equation for the ML regression 
model was 
 

y = β0+β1X1+β2X2+…+βnXn+e, where 

y is the dependent variable, β0 is the intercept, β are 
coefficients, X are the predictors, and e is the 
independent and identically distributed error term. 
 

Results and Discussion  
Modeling findings indicated a close agreement 
between simulated and observed total field data, 
with vector data showing higher noise levels 
(Figure 2). Measured magnetic field vector data is 
commonly of higher noise due to hardware 
limitations, whereas total field is measured 
separately, lowering signal noise. 
 
The LSTM model showed promising findings for 
using simulation as a data augmentation approach 
for supplementing observational data (Figure 5). 
Less so for Y-field predictions, large dipole peak 
predictions were of lower agreement between 
simulated and LSTM data. When training a 
regression model on simulated data (Figure 6), an 
R2 of over 0.98 was estimated. Performance for the 
DNN was also promising (Figure 7), but it may 
require more training data and future work to 
extend findings to other sensor data. The regression 
model was trained with strong regularization to 
foster generalizability and was still able to achieve 
a good fit. Conversely, the boosting model did not 
show strong predictor effects, as the accuracy was 
only around 0.5. Permeability was the feature of 
highest importance (0.44) in determining model 
accuracy. Target aspect ratio (0.30) and UUV speed 
(0.26) were of similar importance. 
 
Of note, the poor results of the boosting algorithm 
may be associated with the low contrast among 
sensor signal differences from predictors. 
Permeability being the most important predictor 
makes sense, due to the different influence on 
magnetic fields from object density [19]. Perhaps 
an increase in sample size might unveil small-scale 
differences in signals due to target shape or sensor 
movement speed. 
 

 
Figure 5. LSTM model fit to simulated sensor data; peaks 
are dipoles. 
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Figure 6. Sensor data prediction performance of a 
regression model fit to simulated 12 in pipe target data 
and tested on simulated 24 in pipe target data (relative 
permeability was set to 50 for both targets). 

 

Figure 7. Sensor data prediction performance of a DNN 
model trained on simulated 12 in pipe target data and 
tested on simulated 24 in pipe target data (relative 
permeability was set to 50 for both targets). 

Conclusions 
Our approach demonstrates the critical role of 
validated potential fields modeling in supporting 
ML applications. The sandbox environment not 
only facilitates the generation of high-fidelity 
training data but also provides a controlled setting 
for testing and refining ML algorithms before 
deployment in real-world scenarios. The 
implications of this work extend beyond underwater 
exploration, offering a blueprint for integrating 
simulation-driven ML in various geophysical and 
engineering domains. 
 
As this work points toward the successful 
integration of simulation and ML approaches, 
future work to advance the benefits from this study 
needs to be highlighted. A potentially fruitful 
undertaking may be to test observational data as a 
check for ML models based on simulations, 
especially in areas where observation data are not 
size-limited. Comparing ML models trained on 
simulations and tested on observations (or vice-
versa) may, with repetition and time, point toward 
better parameterization of both simulated and ML 
models as causes for ML performance limitations 
can be unveiled. 
 

Additional future work may be conducted to allow 
more readily deployable ML models for field 
operations. Generating prediction ML models to 
estimate distance to target and target type are 
essential for field operations, especially for 
cleanups in post-war dumping and military test 
areas [4], [20], [21]. Another area of work to extend 
the benefits of this study are edge computing of 
sensor data [22]. As ML models will be deployed 
on the edge, offloading computation associated 
with ML models needs to be carefully planned with 
limited compute resources in mind, such as simpler 
ML model architectures. This study would be 
remiss if it did not mention sensor data pipelines. 
Sensor data is commonly of large volume and 
velocity, requiring careful implementation planning 
for its transfer and storage. Data storage is 
imperative for the continuous training and testing of 
ML models, including assessing the effectiveness 
of deployed models. 
 
In closing, the fusion of COMSOL Multiphysics 
modeling with machine learning represents a 
powerful synergy, enabling the development of 
intelligent UUV systems capable of autonomously 
interpreting complex geophysical data. This 
research underscores the potential of advanced 
modeling and ML to drive innovation in maritime 
surveillance and beyond. 
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