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Abstract 

Foam is a multiscale material composed of many millimetric cells. Altogether, the cells can easily be shaped into 

almost any object of the metric scale, provided that a mold is available to let the initial mixture expand 

appropriately. 

While some mechanical properties such as foam density can analytically be calculated from the bulk material and 

the void ratio, others cannot. Even the Young modulus and Poisson ratio of an isotropic foam are out of reach for 

analytical analysis: in this work, it will be demonstrated that mixing laws fail at correctly predicting their values. 

Indeed, the structural properties depend strongly on the micro-structure of the foam. 

In this work, periodic homogenization as described in Viry et al. [1] is applied to investigate the foam properties. 

The foam unit cell selected is based on Weaire and Phelan solids [2] that represent a periodical structure very close 

to foam structure. Indeed, the Weaire and Phelan pair of solids show two import properties: together, (a) they map 

the 3D space, and at the time of the study, (b) they are the periodical volumes verifying (a) that show the minimal 

surface to volume ratio. This latter property is mimicking accurately the energy minimization process involved in 

cell shape forming process. 

Thanks to the periodic homogenization method, the Young modulus and Poisson ratio are computed and applied 

to a car seat under load. This allows for determining the seat shape under load. Moreover, periodic homogenization 

includes a relocation method, which is used to investigate the structural integrity of the cell wall and estimate the 

evolution of the foam properties over time. Therefore, such method is a powerful tool to study the replacement of 

traditional polymer-based composites and foams by environmentally respectful alternatives. 

Keywords: foam, equivalent medium, multiscale approach, homogenization, elasticity, macroscopic and 

microscopic medium, unit cell, car seat.

1 Introduction 

Foams are widely used in everyday life and industry 

as soft and lightweight materials. For certain 

applications, a specific formulation must be 

developed to obtain the desired properties and 

behavior: target porosity, user comfort, durability… 

etc. Numerical modelling could help to select 

relevant formulations while reducing the amount of 

experimental trials. 

 Using classical finite element techniques, 

foams can be very difficult to model directly due to 

the large number of tiny details required to describe 

the microstructure of an entire part. The use of 

specialized methods such as homogenization 

techniques is then required: Voigt and Reuss laws 

(also known as mixing laws) [3], or periodic 

homogenization [1]. 

 The aim of this article is to propose a numerical 

workflow to help in the formulation of foams, by 

using homogenization methods. This workflow is 

illustrated by the following use-case: choosing the 

right foam density for a car seat. 

2 Numerical Model 

This work aims to optimize the formulation of a solid 

foam, that composes a car seat. This foam must have 

specific mechanical properties to maximize the user 

comfort, while ensuring its durability over time. 

Figure 1 provides an overview of the whole process. 

  

 Figure 1. Overview of the numerical workflow. 
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Foam Micro-Structure Model 

A solid foam is made of a stable cluster of gas 

bubbles separated by a solid film. Depending on the 

process and the chemical formulation, this cluster of 

gas bubbles can take many different shapes. Certain 

foams tend to minimize their surface/volume ratio. 

In this work, we use the Weaire and Phelan solids [2] 

that pave the space periodically as gas bubbles, and 

that show a very low surface to volume ratio (today, 

they even show the lowest ratio among all the solids 

periodically mapping the space). The boundaries of 

the solids are extruded to a specific thickness, 

thereby defining the solid film. The resulting 

periodic pattern for the solid phase is pictured in 

Figure 2. In this model, the film thickness is 

adjustable, and forms the parameter mimicking foam 

formulation variations. 

 

Figure 2. Periodic pattern of the solid foam micro-

structure. 

 At the microscopic level, the solid has specific 

mechanical properties.  Here, the following values 

are used: density 𝜌 = 1.45 g/cm3, Young modulus 

𝐸 = 7.5 MPa, and Poisson ratio 𝜈 = 0.499, that are 

typical values for dense polyurethan. The holes 

contain air, and in this document, it is assumed that 

their mechanical effects are negligible. In the 

following, the periodic pattern of the solid film 

(Figure 2) and its mechanical properties form the 

unit cell of the microstructure. 

Homogenization Methods 

A part such as a car seat made of a foam may contain 

millions of repetitions of the unit cell, and its 

modelling without any simplifications is 

computationally out of reach: the use of 

homogenization methods is highly recommended. 

These methods allow to extract macroscopic 

mechanical properties (apparent density, Young 

modulus, Poisson ratio) by studying the 

microstructure. In the following, it is assumed that 

the solid film forming the foam remains in the elastic 

domain. 

 For a foam, the apparent density 𝜌 is directly 

obtainable from the solid film density 𝜌𝑠𝑜𝑙𝑖𝑑  and the 

porosity of the material 𝜀: 

𝜌 = (1 − 𝜀) 𝜌𝑠𝑜𝑙𝑖𝑑  (1) 

 Voigt and Reuss laws are simple laws to 

homogenize mechanical properties of composite 

materials. The Voigt law assumes that, under load, 

each phase of the unit cell is subjected to the same 

strain. For a two-phase material, the resulting 

macroscopic moduli, compressibility modulus 𝑘 and 

shear modulus 𝜇 are [3]: 
 

𝑘𝑉 = 𝑘1 + 𝑐0 ⋅ (𝑘0 − 𝑘1), 

𝜇𝑉 = 𝜇1 + 𝑐0 ⋅ (𝜇0 − 𝜇1), 
(1) 

where the subscript ⬚𝑉 stands for “Voigt”, the index 

designates the phase, and 𝑐0 is the volume fraction 

of phase 0. This is the average of the phase moduli 

weighted by the volume fraction. The Reuss law 

assumes that, under load, each phase is subjected to 

the same constraint, resulting in the following 

macroscopic moduli for a two-phase material [3]: 

𝑘𝑅 =
𝑘0 𝑘1

𝑘0+𝑐0(𝑘1−𝑘0)
, 

𝜇𝑅 =
𝜇0 𝜇1

𝜇0+𝑐0(𝜇1−𝜇0)
. 

(2) 

where the subscript ⬚𝑅 stands for “Reuss”. This is 

the harmonic average of the phase moduli weighted 

by the volume fraction. Applied to our unit cell, the 

first phase being the solid film (moduli 𝑘𝑠𝑜𝑙𝑖𝑑  and 

𝜇𝑠𝑜𝑙𝑖𝑑), and the second phase being air (𝐸 ≈ 0), the 

homogenized properties become: 

𝑘𝑉 = (1 − 𝜀) 𝑘𝑠𝑜𝑙𝑖𝑑,    𝜇𝑉 = (1 − 𝜀) 𝜇𝑠𝑜𝑙𝑖𝑑 , 

𝑘𝑅 = 0,    𝜇𝑅 = 0, 
(3) 

and can be expressed as a Young modulus and a 

Poisson ratio: 

𝐸𝑉 = 3 𝑘𝑉(1 − 2𝜈𝑉),    𝜈𝑉 =
3 𝑘𝑉−2 𝜇𝑉

2(3 𝑘𝑉+𝜇𝑉)
, 

𝐸𝑅 = 0,    𝜈𝑅 = undetermined. 
(4) 

Voigt and Reuss laws generally provide an interval 

containing the effective macroscopic properties of 

the microstructure. As seen in Eq. 3 and Eq. 4, this 

interval is expected to be rather large. 

 Periodic homogenization is a more 

sophisticated approach taking into account the 

geometrical specificities of the microstructure, rather 

than being based on very simplifying hypotheses. 

This method has multiple advantages: the resulting 

homogenized properties are proven mathematically 

as almost exact, the computational effort is rather 

low, and it does much more than homogenization. 

Indeed, the method also allows for a very accurate 

prediction of constraints inside the microstructure. 
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To set up the method, nine unitary displacement 

fields 𝜸𝑗𝑘 must be solved within the unit cell: 

−𝛁 ⋅ [𝐂 ∶ 𝛜𝑗𝑘] = 𝛁 ⋅ [𝐂 ∶ 𝒆𝑗𝑘], 

𝛜𝑗𝑘 =
1

2
[𝛁𝜸𝑗𝑘 + (𝛁𝜸𝑗𝑘)

T
], 

𝒆𝑗𝑘 = (
0 ⋯ 0
⋮ 1 ⋮
0 ⋯ 0

) , 1 at 𝑗𝑘-th component, 

𝑗 = 1, 2, 3, 

𝑘 = 𝑗, ⋯ , 3, 
 

(5) 

under 𝒆𝑗𝑘, the unitary strain, where 𝐂 designates the 

elasticity tensor of the unit cell (function of space). 

These equations are closed with periodic boundary 

conditions and imposing mean value of 𝜸𝑗𝑘 as zero. 

Six unitary displacements are in fact needed using 

the symmetry 𝜸𝑘𝑗 = 𝜸𝑗𝑘. From these unitary 

displacements, the homogenized elasticity tensor 𝐂ℎ 

is obtained: 

𝐂𝒉𝑙𝑚𝑗𝑘
=

1

𝑉
∫ 𝐂𝑙𝑚𝑗𝑘 + (𝐂 ∶ 𝛜𝑗𝑘)

𝑙𝑚
 d𝒙

⬚

solid
. 

  
(6) 

with 𝑉, the volume of the unit cell and voids. This is 

an empirical adaptation of the method described in 

our former paper [1] for microstructures with holes. 

From this homogenized elasticity tensor, assuming 

isotropy, a Poisson ratio and a Young modulus can 

respectively be derived: 

𝜈ℎ = (
𝐂ℎ1111

𝐂ℎ1122

+ 1)
−1

, 

𝐸ℎ = 𝐂ℎ1111

(1+𝜈ℎ)(1−2𝜈ℎ)

1−𝜈ℎ
. 

  

(7) 

The method being empirically adapted to 

microstructures with holes, accuracy of the 

homogenized properties will be carefully checked. 

Car Seat Mechanical Model 

 

 

 

Figure 3. Car seat 

geometry. 

 Figure 4. Car seat 

boundary conditions. 

A schematic but representative car seat is selected 

for this work. It is composed of the seat itself, the 

backrest and the headrest. It is represented in Figure 

3. The seat is approximately 50 cm wide. 

 The solid mechanics in the car seat foam is 

implemented using a linear elastic material 

assumption. The equation: 

𝛁 ∙ 𝐒 = 𝟎 
 

(8) 

with 𝐒 the stress tensor, is resolved in the full domain 

represented in Figure 3. The actual frame is not 

considered in this work for the sake of simplicity. 

 The boundary condition of fixed constraint is 

applied at the bottom of the seat part, at the back of 

the backrest and on the side of the head rest, as seen 

in Figure 4 (blue surfaces). Such fixed constraint 

represents the frame action on the foam. In this work, 

the load is only applied on the seat. A circular contact 

Hertzian pressure distribution is applied on top of the 

seat, as seen in Figure 4 (red area, with grey arrow 

distribution). The diameter of the circular load is 

40 cm, and the load integral is 838 N. 

Foam Density Optimization Methodology 

A parametric study is performed to quantify the 

effect of the apparent density of the foam on its 

mechanical properties. Then, multiple simulations of 

the car seat are performed with these properties, to 

evaluate the global behavior of the part, in function 

of the foam apparent density. Assuming the 

existence of criteria to optimize (global weight, user 

comfort, maximum constraints level… etc), a 

relevant foam formulation can be selected from these 

simulation results. 

3 Results and Discussion 

Comparison of Homogenization Methods 

The homogenized properties obtained at a specific 

porosity (or equivalently a specific film thickness, or 

a specific density) using each homogenization 

method are given in Table 1. For the periodic 

homogenization method, the isotropy of the material 

has been verified by inspecting each component of 

the homogenized elasticity tensor 𝐂ℎ. 

Table 1. Homogenized properties obtained by each method 

with a porosity 𝜀 = 0.913. 

 𝜌 (g/cm3) 𝐸 (MPa) 𝜈 (1) 

Reuss law 
 

0.127 

 

0 N/A 

Voigt law 0.655 0.499 

Periodic 

homogenization 
0.231 0.38 
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 The Young modulus obtained using the 

periodic homogenization method falls inside the 

interval formed by the Voigt and Reuss laws. But 

this interval is extremely large, ranging from 

infinitely soft to relatively stiff. For this foam, there 

is a factor of 3 between the periodic homogenization 

Young modulus and the Voigt law one, which leads 

to very different behavior depending on the law 

selected. In order to select the most relevant law, a 

numerical experiment has been made to compare the 

behavior of a few repetitions of the unit cell (a tiny 

cube of foam of 3 mm size) under load, with its 

homogenized counterparts. The part is fixed at its 

bottom face and is subjected to a compression load 

homogeneously distributed over the top face. The 

results are pictured in Figure 5. The homogenized 

part issued from periodic homogenization almost 

perfectly reproduces the global behavior of the part 

in terms of axial compression and transversal 

dilatation, while the homogenized part issued from 

the Voigt law only captured the order of magnitudes. 

Thus, it is preconized to use periodic 

homogenization to accurately model the 

macroscopic behavior of foams. 

 

Figure 5. Comparison of the deformation of a non-

homogenized foam and two homogenized foams modelled 

by the Voigt law and periodic homogenization, subjected 

to the same compression load. 

Application to the Car Seat Case: Foam 

Optimization 

The parametric study on the apparent density of the 

foam is performed using the periodic 

homogenization method. The results are given in 

Figure 6. 

 

 

Figure 6. Foam mechanical properties obtained with the 

periodic homogenization method in function of its 

apparent density. 

 The Young modulus increases with the 

apparent density of the foam, which is not surprising, 

with values ranging from 0.1 to 1 MPa. The Poisson 

ratio does not depend on the apparent density of the 

foam, staying at value 0.38. The foam is more 

compressible than the bulk solid, probably due to its 

specific geometrical microstructure and maybe due 

to the simplification hypothesis regarding gas 

contribution. 

 As the foam is characterized, the car seat 

behavior can be simulated using mechanical 

properties that the foam could have. Multiple 

simulations of the car seat under load have been 

performed with a Young modulus having values 

ranging from 0.02 to 2 MPa, and a constant Poisson 

ratio of 0.38. Under the Hertzian load modelling a 

seated user, the maximum displacement in the seat is 

reported in Figure 7. 
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Figure 7. Maximum displacement in the foam under 

Hertzian load. 

 A target of arbitrarily 5 mm maximum 

displacement is selected in this load case. According 

to Figure 7, this means that the target Young 

modulus is 0.2 MPa. From Figure 6, this Young 

modulus is attainable with a foam having an apparent 

density of 0.1 g/cm3. The full displacement field 

using this optimal foam is displayed in Figure 8. 

 

Figure 8. Displacement field of the car seat under the 

Hertzian load. 

4 Conclusions 

The aim of this work was to illustrate how 

homogenization methods can help industrials to 

formulate foams and to design parts made of foams. 

 A geometrical model of the microscopic 

structure of a foam was proposed using the Weaire 

and Phelan solids. It was then shown that the 

periodic homogenization method is very accurate in 

predicting the elastic properties of foams, while 

alternatives (Voigt and Reuss laws) are only able to 

predict the orders of magnitude. These numerical 

tools allowed for the study of the mechanical 

properties that the foam could have depending on its 

formulation. By simulating the mechanical 

deformations of a part made of foam, the optimal 

mechanical properties and thus its formulation were 

determined. Homogenization methods are then 

valuable numerical tools for evaluating and 

formulating foams. This method can alternatively be 

used for other materials defined by their 

microstructure: metallic foams, carbon fiber… etc. 

 Durability is another desired property that 

requires the ability to predict the constraints at the 

microscopic level and mechanical fatigue. This is 

part of our future work. 
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