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Abstract 
Angular contact ball bearings (ACBB) are rolling bearings designed to support both axial and radial loads. The 

rolling elements (balls in this case) significantly decrease the power losses associated with rotating load bearing 

by replacing sliding with rolling. However, both the specific kinematic of ACBB and the depth of the ring grooves 

respectively generate spinning and sliding between the balls and the rings. Together, they contribute to generate 

frictional power losses. 

The specific kinematic of ACBB comes from the axial load the bearing is designed to withstand(1,2): the rotation 

axes of the rings and the balls are not parallel to each other; this results in spinning induced sliding, and thus, 

frictional power losses.  Moreover, the conformal elliptical contact between the rather deep grooves and the balls 

creates a large non planar contacting area. Such contact inherently involves sliding apart from the two pure rolling 

lines. Such sliding also contributes to frictional power losses. 

This study investigates the frictional power losses in ACBB by simulating the elliptical contact between a ball and 

a ring. Under motion, the lubricant fully separates the bodies in elastohydrodynamic lubrication condition. Because 

of the sliding, the lubricant is sheared which produces heat and activates non-Newtonian effects. An 

elastohydrodynamic model including both thermal and non-Newtonian effects(3) is used and the kinematic is 

defined accordingly to the application. Different simulations are run to predict the frictional power losses in the 

specific ACBB investigated. 
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Introduction 
Angular contact ball bearings (ACBB) are widely 

used in rotating machinery and have gained 

popularity today due to their low friction and ability 

to operate at high speeds. They are suitable for 

applications such as electric motors, aero engines, 

etc. Nevertheless, the use of ACBB requires an in-

depth analysis in order to effectively control the heat 

generated by the lubricant friction and avoid failures 

caused by wear. 

Many factors contribute to friction in angular contact 

ball bearings (ACBB), such as rolling friction in the 

contacts between balls and raceways. A significant 

factor of friction in ACBBs is produced on the 

contact ellipses between the balls and the raceways 

because of the complicated movement of the balls. 

The kinematic parameters of the balls in an ACBB 

are complicated and depend on the geometry, the 

rotational speed of the inner or outer ring and the 

ball, and the axial and radial loads. 

Several theoretical models based on the balance of 

forces and moments of the balls and the ring have 

been developed to determine the motions of the 

balls. The quasi-static model of ball bearings was 

first proposed by Jones(4). They were reported by 

Harris(5), Poplawsky(6) and Dominy(7) for high-

speed conditions. Depending on the geometry of the 

balls and the raceways as well as the rotational 

speed, the forces and contact angles in an ACBB can 

be evaluated when the motions of the inner ring are 

known. Therefore, the "raceway control" was 

adopted, with an "outer raceway control" in high-

speed conditions and an "inner raceway control" in 

low-speed conditions. However, adopting either of 

these assumptions is difficult and the transition from 

low to high speed cannot be determined by a distinct 

relationship. 

A more accurate and practical "quasi-dynamic" 

approach, based on solving the balance of forces, 

was proposed (8,9). Some researchers then coupled 

the quasi-dynamic model with thermo-

elastohydrodynamic lubrication (TEHL) to study the 

effects of rotation on the lubricant film thickness and 

temperature distribution(2,10). However, the quasi-

dynamic model does not consider the characteristics 

of temporal variation of the relative displacement 

between the bearing components, which limits its 

transient analysis capabilities. 

To develop more complete dynamic models, 

Walters(11) proposed the dynamic rolling model. 

The dynamic model obtains the contact force using 

Hertz's theory and calculates the friction force using 

a semi-empirical EHD lubrication model. Gupta(12) 

then expanded the model and developed a first 

complete dynamic model to solve both the 

kinematics and dynamics in ball and roller bearings 

and presented in a later publication a comprehensive 

manual including his complex software ADORE. In 

addition, a dynamic rolling simulation tool, called 

BEAST, was developed by SKF(13). It uses 

elastohydrodynamic lubrication (EHD) to calculate 
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the contact force. The traction force was calculated 

using a non-Newtonian rheological model as a 

function of the Newtonian film thickness and 

pressure distributions. However, the dynamic model 

is more costly compared to the quasi-static and 

quasi-dynamic models. 

In this research, since the operating conditions are 

considered stationary, the highly accurate and 

applicable quasi-dynamic model is first adopted. A 

numerical approach has been developed for angular 

contact ball bearings inside COMSOL Multiphysics. 

A thermo-elastohydrodynamic lubrication (TEHL) 

analysis is performed to evaluate the lubrication state 

of the elliptical contacts between the ball and the 

raceway. 

Numerical Model 

Contact Geometry and Kinematics of Angular 

Contact Bearings 

An angular contact bearing is considered. In this type 

of bearing, the contact between the balls and the 

raceways occurs along an axis inclined with respect 

to the normal plane to the shaft's axis of rotation. 

This implies that the axis of rotation of the balls is 

itself inclined with respect to the axis of rotation of 

the shaft. We focus here on a contact between a ball 

and the inner and outer rings. Between the ball and 

race under loading, an elliptical contact area is 

formed. 

The geometrical parameters of the contact have been 

calculated (1,10,14): 

 

Parameters Formula Unit 

Bearing inside diameter 𝑑𝑖 mm 

Bearing outside 

diameter 
𝑑𝑜 mm 

Element diameter 𝐷 mm 

Contact angle on the 

inner race 
𝛼𝑖 rad 

Pitch diameter 𝑑𝑒 = (𝑑𝑖 + 𝑑𝑜)/2 mm 

Outer race Curvature 𝑓𝑜 = 𝑟𝑜/𝐷 - 

Inner race Curvature 𝑓𝑖 = 𝑟𝑖/𝐷 - 

Radii of curvature of 

ball (x) 
𝑅1𝑥 = D/2 mm 

Radii of curvature of 

ball (y) 
𝑅1y = D/2 mm 

Radii of curvature of 

inner race (x) 
𝑅2𝑥 =

𝑑𝑒 − 𝐷 𝑐𝑜𝑠𝛼

2 𝑐𝑜𝑠𝛼
 mm 

Radii of curvature of 

inner race (y) 
𝑅2𝑦 = −𝑓𝑖  𝐷 = −𝑟𝑖 mm 

Reduced radii of 

curvature (x) 
𝑅𝑥 = (

1

𝑅1𝑥
+

1

𝑅2𝑥
)

−1

 mm 

Reduced radii of 

curvature (y) 
𝑅𝑦 = (

1

𝑅1𝑦
+

1

𝑅2𝑦
)

−1

 mm 

Hertzian contact radius 𝑅𝑎𝑖 = 2𝐷𝑓𝑖/(2𝑓𝑖 + 1) mm 

Semi-major axis of the 

contact ellipse (y) 
𝑏 mm 

Table 1: Geometrical parameters 

The following are the kinematic parameters of an 

oblique ball bearing, as derived from(1,2,10,15): 

 

Parameters Formula Unit 
Ball orbital velocity 

(cage angular 

velocity) 

𝑤𝑐  rad/s 

Ball rotational 

velocity 
𝑤𝑏 rad/s 

Inner race rotational 

velocity 
𝑤𝑖 rad/s 

Outer race rotational 

velocity 
𝑤𝑜 rad/s 

Relative angular 

speed of inner race 
𝑤𝑟𝑖 = 𝑤𝑖 − 𝑤𝑐  rad/s 

Ball spinning 

angular velocity on 

inner race 

𝑤𝑠𝑖 = 𝑤𝑟𝑖  𝑠𝑖𝑛(𝛼𝑖) rad/s 

Distance from the 

center of the ball to 

the point on the 

contact ellipse 

𝐴𝑖

= (𝑅𝑎𝑖
2 − 𝑦2)

0.5

− (𝑅𝑎𝑖
2 − 𝑏2)

0.5

+ ((0.5 𝐷)2 − 𝑏2)0.5 

m 

Tangential velocity 

of ball in x direction 
𝑢𝑏𝑥 = 𝑤𝑏 𝐴𝑖 + 𝑤𝑠𝑖  𝑦 m/s 

Tangential velocity 

of inner race in x 

direction 

𝑢𝑖𝑥

= (𝑑𝑒 ∕ 2

− 𝐴𝑖  𝑐𝑜𝑠(𝛼𝑖))𝑤𝑟𝑖 

m/s 

Tangential velocity 

of ball in y direction 
𝑢𝑏𝑦 = 𝑤𝑠𝑖  𝑥 m/s 

Table 2: Kinematic parameters 

Generalized Reynolds Equation with Thermal 

Effects 

Because of the sliding prone kinematics, a proper 

account of the lubricant sheared flow is important. 

Whilst classical Reynolds equation(16) assumes 

constant variables across the fluid film, and Navier-

Stokes equations are computationally expensive in 

lubricated contacts(17), generalized Reynolds 

equation(18) constitutes a recognized solution. The 

model described below is based on the work of 

Habchi et al.(3,19,20). Variations of fluid velocity, 

density, viscosity and temperature across film 

thickness are acknowledged but integrated before 

intervening in this generalized Reynolds equation: 

 

𝛁 ∙ (𝜀 ̅𝛁𝑝) − 𝛁 ∙ 𝝆∗ = 0 

 

with 𝑝 the hydrodynamic pressure, 𝜀 ̅ =
𝜂𝑒

𝜂𝑒
′ 𝜌𝑒

′ − 𝜌𝑒
′′ 

the new diffusion term gathering cross-film 

integrated variables detailed in Table 3, and 𝝆∗ =

(𝜌𝑥
∗  ;  𝜌𝑦

∗ ) a density, viscosity and velocity composite 

convection term with 𝜌𝑖
∗ = 𝜌𝑒

′ 𝜂𝑒(𝑢𝑡,𝑖 − 𝑢𝑏,𝑖) −

𝜌𝑒𝑢𝑏,𝑖 its 𝑖𝑡ℎ component. The velocity of the bottom 

and top solids in the  𝑖𝑡ℎ direction are respectively 

𝑢𝑏,𝑖 and 𝑢𝑡,𝑖. Such framework enables the 

computation of the fluid velocity in any point in the 

fluid film: 
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𝑢𝑓,𝑖 =
𝜕𝑝

𝜕𝑖
 (∫

𝑧

𝜂
𝑑𝑧

𝑧

0

−
𝜂𝑒

𝜂𝑒
′

∫
1

𝜂
𝑑𝑧

𝑧

0

)

+ 𝜂𝑒(𝑢𝑡,𝑖 − 𝑢𝑏,𝑖) ∫
1

𝜂
𝑑𝑧

𝑧

0

+ 𝑢𝑏,𝑖  for 𝑖 = {𝑥, 𝑦} 

 

Boundary conditions 𝑝 = 0 is applied far enough 

from the high-pressure region, and the open 

boundary condition for cavitation is set by applying 

a penalty term for negative pressures 𝑝.  

 

𝜌𝑒 = ∫ 𝜌 𝑑𝑧
ℎ

0

 
1

𝜂𝑒

= ∫
1

𝜂
𝑑𝑧

ℎ

0

 

 𝜌𝑒
′ = ∫ (𝜌 ∫

1

𝜂
𝑑𝑧′

𝑧

0

) 𝑑𝑧
ℎ

0

 
1

𝜂𝑒
′

= ∫
𝑧

𝜂
𝑑𝑧

ℎ

0

 

𝜌𝑒
′′ = ∫ (𝜌 ∫

𝑧′

𝜂
𝑑𝑧′

𝑧

0

) 𝑑𝑧
ℎ

0

 
with ℎ the film 

thickness, 𝑧 the 

coordinate in the 

direction 

perpendicular to 

contact plane, 𝜌 the 

density and 𝜂 the 

viscosity. 

Table 3: Integration terms of generalized Reynolds 

equation 

The fluid behavior is defined according to a Tait 

equation of state (21,22) for temperature and 

pressure dependence of density, a modified WLF 

model (23) for temperature and pressure dependence 

of viscosity and a Carreau-Yasuda-Bair (24) model 

for shear stress dependence of viscosity. The Tait 

equation of state relates the lubricant volume 𝑉 to its 

volume 𝑉0 at ambient pressure and its volume 𝑉𝑅 at 

reference temperature 𝑇𝑅 with the expressions:  

 
𝑉

𝑉0
= 1 −

1

1+𝐾0
′ ln [1 + 𝑝

1+𝐾0
′

𝐾0
]  

and 
𝑉0

𝑉𝑅
= 1 + 𝑎𝑣 ∙ (𝑇 − 𝑇𝑅) 

 

with 𝐾0 = 𝐾0𝑅 exp(−𝛽𝐾𝑇), 𝐾0
′ = 𝐾0𝑅

′ exp(𝛽𝐾
′ 𝑇), 

and 𝐾0𝑅, 𝛽𝐾, 𝐾0𝑅
′ , 𝛽𝐾

′  and 𝑎𝑣 defined to fit the 

lubricant behavior. Therefore, the density is 

expressed relatively to an ambient condition density 

𝜌𝑅 by: 

 

𝜌(𝑝, 𝑇) = 𝜌𝑅 ∙ (
1

𝑉0 ∕ 𝑉𝑅

∙
1

𝑉 ∕ 𝑉0

) 

 

The modified WLF expression reads:  

 

𝜇(𝑝, 𝑇) = 𝜇𝐺  𝑒𝑥𝑝 [
−2.303 𝐶1 (𝑇 − 𝑇𝑔)𝐹

𝐶2 + (𝑇 − 𝑇𝑔)𝐹
] 

 

with 𝑇𝑔(𝑝) = 𝑇𝑔0 + 𝐴1 ln(1 + 𝐴2𝑝) the glass 

transition temperature at a given pressure, 𝑇𝑔0 the 

glass transition temperature at ambient pressure, 

 𝐹(𝑝) = (1 + 𝑏1𝑝)𝑏2, and finally 𝜇𝐺, 𝐶1, 𝐶2, 𝐴1, 𝐴2, 

𝑏1 and 𝑏2 defined by regression to fit the lubricant 

rheology. 

Finally, the Carreau-Yasuda-Bair reads:  

 

𝜂(𝑝, 𝑇, 𝜏) =
𝜇(𝑝, 𝑇)

[1 + (
𝜏

𝐺𝐶𝑌𝐵
)

𝑎𝐶𝑌𝐵
]

1
𝑛𝐶𝑌𝐵

−1

𝑎𝐶𝑌𝐵

 

 

with 𝜏 = √𝜏𝑧𝑥
2 + 𝜏𝑧𝑦

2  the shear stress norm, 𝜏𝑧𝑥, 𝜏𝑧𝑦 

its components in the contact plane, and 𝑎𝐶𝑌𝐵 , 𝑛𝐶𝑌𝐵 

and 𝐺𝐶𝑌𝐵 defined by regression to fit the lubricant 

rheology. 

 

The contact load 𝑤 is balanced by the sum of 

hydrodynamic pressure 𝑝 in an ordinary differential 

equation (ODE) w = ∬ 𝑝 𝑑𝑥𝑑𝑦
⬚

𝑆
. This ODE is 

solved by varying the rigid body distance ℎ0 between 

the solids. This distance appears in the film thickness 

expression: 

 

ℎ(𝑥, 𝑦) = ℎ0 +
𝑥2

2𝑅𝑥

+
𝑦2

2𝑅𝑦

+ 𝛿(𝑥, 𝑦) 

 

with 𝑅𝑥 and 𝑅𝑦 the reduced curvature radii of the two 

solids respectively in the direction 𝑥 and 𝑦, and 

𝛿(𝑥, 𝑦) is the vertical elastic deformation of the 

equivalent solid. This equivalent solid is a cubic 

body which side is large compared to contact 

dimension. At the cubic body bottom face a fixed 

boundary condition is applied, on the sides faces, a 

free condition is applied, and the top is loaded with 

the contact pressure 𝑝. 

 

The variables in Table 3 allow for feeding Reynolds 

equation with material properties varying across the 

fluid film because of shear stress variations and 

temperature differences. Whereas shear stress 

dependence is described above, the temperature 

computation requires a heat equation in the fluid film 

and the solids. The former heat transfer equation 

reads: 

 

𝜌𝐶𝑝𝑓𝒖𝒇 ∙ 𝛁𝑇 − 𝛁 ∙ (𝑘𝑓𝛁𝑇) = 𝑄𝑐𝑜𝑚𝑝 + 𝑄𝑠ℎ𝑒𝑎𝑟  

 

with 𝐶𝑝𝑓 the fluid heat capacity, 𝑘𝑓 the fluid heat 

conductivity, 𝑄𝑐𝑜𝑚𝑝 = −
𝑇

𝜌

𝜕𝜌

𝜕𝑇
(𝒖𝒇 ∙ 𝛁𝑝) the 

compression heat source and 𝑄𝑠ℎ𝑒𝑎𝑟 =

𝜇 ((
𝜕𝑢𝑓,𝑥

𝜕𝑧
)

2

+ (
𝜕𝑢𝑓,𝑦

𝜕𝑧
)

2

) the shearing heat source. In 

the solids, the heat equation reads: 

 

𝜌𝑗𝐶𝑝𝑗𝒖𝒋 ∙ 𝛁𝑇 − 𝛁 ∙ (𝑘𝑗𝛁𝑇) = 0 with 𝑗 = {𝑡, 𝑏} 

 

with 𝜌𝑗 the solid density, 𝐶𝑝𝑗 its heat capacity and 𝑘𝑗 

its heat conductivity. The heat equation in the solids 

and in the fluid film are solved together on a single 
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solid divided in three domains. More details 

regarding the domain and the boundary conditions 

can be found in Habchi’s work (3). 

Results and discussion 
The analysis provides numerical outcomes of the 

local interactions between the ball and the inner and 

outer tracks. A sample of the analysis is shown 

below for the interaction between a ball and the inner 

track. 

The pressure distribution of the contact is illustrated 

below. The contact is subjected to a high pressure up 

to several GPa. The film thickness distribution is 

also obtained on the elliptical contact. 

 

  
Figure 1: Inner race pressure distribution map [GPa] 

(left), Inner film thickness distribution (right) 

The map of entrainment speed and slip is illustrated 

as follows. The contact speed field results from a 

combination of rolling speed, slip and spinning. The 

slip ratio relative to rolling varies along the 𝑦 axis of 

the contact. 

 

 
Figure 2: Map of entrainment velocity (left) and slide-to-

roll ratio along x direction (SRRx) (Right) 

Below is shown the temperature profile, along with 

the SRR and viscosity. From these results, it is 

possible to see that heat dissipation by shear is high 

when slip and viscosity are high, which shows 

logical consistency. 

 
Figure 3: Temperature profile (left), SRRx (middle) and 

viscosity profiles (right) 

Conclusions 
This study evaluates the lubrication condition of 

elliptical ball-race contacts in angular contact ball 

bearings using a Thermal ElastoHydrodynamic 

Lubrication (TEHL) analysis. It considers different 

key operational parameters, such as rotational speed, 

unloaded contact angle, and external loading. It also 

gives quantitative results on local contact pressure 

and temperature profiles, film thickness, velocity 

and sliding roll ratio (SRR). It can be used to 

estimate the heat loss from lubricants' friction in 

angular contact bearings. The numerical approach in 

this study can predict and optimize lubricant 

performance in the bearings, especially for thermal 

aspects and lubrication. 
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