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ABSTRACT

We have applied the perturbation theory for calculating the piezoelectric potential distribution in a nanowire (NW) as pushed by a lateral force
at the tip. The analytical solution given under the first-order approximation produces a result that is within 6% from the full numerically
calculated result using the finite element method. The calculation shows that the piezoelectric potential in the NW almost does not depend
on the z-coordinate along the NW unless very close to the two ends, meaning that the NW can be approximately taken as a “parallel plated
capacitor”. This is entirely consistent to the model established for nanopiezotronics, in which the potential drop across the nanowire serves
as the gate voltage for the piezoelectric field effect transistor. The maximum potential at the surface of the NW is directly proportional to the
lateral displacement of the NW and inversely proportional to the cube of its length-to-diameter aspect ratio. The magnitude of piezoelectric
potential for a NW of diameter 50 nm and length 600 nm is ∼0.3 V. This voltage is much larger than the thermal voltage ( ∼25 mV) and is high
enough to drive the metal −semiconductor Schottky diode at the interface between atomic force microscope tip and the ZnO NW, as assumed
in our original mechanism for the nanogenerators.

Developing novel technologies for wireless nanodevices and
nanosystems is of critical importance for applications in
biomedical sensing, environmental monitoring, and even
personal electronics. Miniaturization of a power package and
self-powering of these tiny devices are some key challenges
for their applications. Various approaches have been devel-
oped for harvesting energy from the environment based on
approaches such as thermoelectricity and piezoelectricity.
Innovative nanotechnologies are being developed for con-
verting mechanical energy (such as body movement, muscle
stretching), vibration energy (such as acoustic/ultrasonic
wave), and hydraulic energy (such as body fluid and blood
flow) into electric energy that will be used to power
nanodevices that operate at low power.

Recently, using piezoelectric ZnO nanowire (NW) arrays,
a novel approach has been demonstrated for converting
nanoscale mechanical energy into electric energy.1-3 The
single nanowire nanogenerator (NG) relies on the bending
of a NW by a conductive atomic force microscope (AFM)
tip, which transfers the displacement energy from the tip to
the elastic bending energy of the NW. The coupled piezo-
electric and semiconducting properties of the NW perform
a charge creation, accumulation, and discharge process. Most
recently, this approach has been extensively developed to

produce continuous direct-current output with the use of
aligned NWs that were covered by a zigzag top electrode,
and the nanogenerator was driven by ultrasonic wave,
establishing the platform of producing usable power output
for nanodevices by harvesting energy from the environment.4

Furthermore, based on the coupled piezoelectric and semi-
conducting properties of the NW, a new field of nanopiezo-
tronics has been created,5,6 which is the basis for fabricating
piezoelectric field effect transistors,7 piezoelectric diode,8

piezoelectric force/humidity/chemical sensors,9 and more.

The theoretical background for the nanogenerator and
nanopiezotronics is based on a voltage drop created across
the cross section of the NW when it is laterally deflected,
with the tensile side surface in positive voltage and compres-
sive side in negative voltage.1,5 It is essential to quantitatively
calculate and even develop analytical equations that can give
a direct calculation of the voltage at the two side surfaces
of the NW, which is important to calculating the efficiency
of the nanogenerator and the operation voltage of the
nanopiezotronics. In the literature, numerous theories for one-
dimensional (1D) nanostructure piezoelectricity have been
proposed, including first-principles calculations,10,11 molec-
ular dynamics (MD) simulations,12 and continuum models.13

However, first-principle theory and MD simulation are
difficult to be implemented to the nanopiezotronics system* Corresponding author. zlwang@gatech.edu.
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(the typical dimension of which is∼50 nm in diameter and
∼2 µm in length) due to the huge number of atoms. The
continuum model proposed by Michalski et al. is relevant
in that it gives a criterion to distinguish between a mechani-
cally dominated regime and an electrostatically dominated
regime. But since their theory is 1D in nature, it is best suited
to elongation/torsion problems, while piezotronics systems
usually involve lateral bending thus strain profile across the
NW cross section is important. In this paper we propose a
continuum model for the electrostatic potential in a laterally
bent NW. A perturbation technique is introduced to solve
the coupled differential equations, and the derived analytical
equation gives a result that is within 6% of that received
from full numerical calculation. The theory directly estab-
lishes the physical basis of nanopiezotronics and nano-
generator as proposed previously.1,5

1. Analytical Solution via Perturbation Theory.
1.1. System Setup and Governing Equations.The typical

setup of a vertical piezoelectric nanowire nanogenerator is
shown in Figure 1. The NW is pushed laterally by an AFM
tip. Piezoelectric potential/field is created by the NW. Our
theoretical objective is to derive the relationship between
the potential distribution in the NW and the dimensionality
of the NW and magnitude of the applied force at the tip.
For this purpose, we start from the governing equations for
a static piezoelectric material, which are three sets: me-
chanical equilibrium equation (eq 1), constitutive equation
(eq 2), geometrical compatibility equation (eq 3), and Gauss
equation of electric field (eq 4). The mechanical equilibrium
condition when there is no body forcefBe

(b) ) 0 acting on the
nanowire is

where σ is the stress tensor, which is related to strainε,
electric fieldEB, and electric displacementDB by constitutive
equations

Here cpq is the linear elastic constant,ekp is the linear

piezoelectric coefficient, andκik is the dielectric constant. It
must be pointed out that eq 2 does not contain the
contribution from the spontaneous polarization introduced
by the polar charge on the((0001) polar surfaces,14 which
are the top and bottom ends of the NW, respectively. The
validity of this approximation will be elaborated later. To
keep the notation compact, the so-called Voigt (or Nye) two-
index notation15 is used. By considering theC6V symmetry
of a ZnO crystal (with wurtzite structure),cpq, ekp, andκik

can be written as

The compatibility equation is a geometrical constraint that
must be satisfied by strainεij

In eq 3 the indices are in the normal definition and Nye
notation is not used.eilm andejpq are Levi-Civita antisym-
metric tensors. For simplicity of the derivation, we assume
that the NW bending is small.

Finally, by assuming no free chargeFe
(b) in the nanowire,

the Gauss equation must be satisfied

1.2. Theory for the First Three Orders of Electro-
mechanical Coupling.Equations 1-4 along with appropri-
ate boundary conditions give a complete description of a
static piezoelectric system. However, the solution of these
equations is rather complex, and analytical solution does not
exist in many cases. Even for a two-dimensional (2D) system,
the solution would entail a partial differential equation of
order 6.16 In order to derive an approximate solution of the
equations, we apply a perturbation expansion of the linear
equations to simplify the analytical solution. Then, we will
examine the accuracy of the perturbation theory in reference
to the exact results calculated by the finite element method.

In order to derive the piezoelectric potential distributed
in the NW for the different orders of electromechanical

Figure 1. The typical configuration of a ZnO nanogenerator. When
pushed by an AFM tip, mechanical deflection gives rise to an
electrical field, the power of which can be released. The pushing
force increases from (1) to (3), until (4) the wire is released.
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coupled effect, we now introduce a perturbation parameter
λ in the constitutive equations by definingẽkp ) λekp, which
is introduced to trace the magnitudes of contributions made
by different orders of effects in building the total potential.
Consider a virtue material with linear elastic constantcpq,
dielectric constantκik, and piezoelectric coefficientẽkp. When
λ ) 1, this virtue material becomes the realistic ZnO. When
λ ) 0, it corresponds to a situation of no coupling between
mechanical field and electric field. For virtue materials with
λ between 0 and 1, the mechanical field and electric field
are both functions of parameterλ, which can be written in
an expansion form

where the superscript (n) represents the orders of perturbation
results. By substituting eq 5 into eq 2 for a virtue material
with piezoelectric coefficientẽkp, and comparing the terms
in the equations that have the same order ofλ, the first three
orders of perturbation equations are given as follows:

For eqs 1, 3, and 4, since there is no explicit coupling, no
decoupling process is needed while seeking perturbation
solution.

We now consider the solutions of the first three orders.
For the zeroth order (eq 6), the solution is for a bent nanowire
without piezoelectric effect, which means there is no electric
field even with the presence of elastic strain. For the case of
ZnO NW, it normally grows with itsc-axis parallel to the
growth direction. The((0001) surfaces at the top and bottom
end of the NW are terminated by Zn2+ and O2- ions,
respectively. The electric field due to spontaneous polariza-

tion arising from polar charges on the((0001) surface can
be ignored for the following two reasons. First, since the
NW has a large aspect ratio, the polar charges on the((0001)
polar surfaces, which are the top and bottom ends of the
NW in most of the cases, can be viewed as two point charges.
Thus they do not introduce an appreciable intrinsic field
inside of the NW. Second, the polar charges at the bottom
end of the NW are neutralized by the conductive electrode,
while the ones at the top of the NW may be neutralized by
surface adsorbed foreign molecules while exposed to air.
Furthermore, even if the polar charges at the top end
introduce a static potential, it will not contribute to the power
generated but shift the potential baseline by a constant value,
which goes to the background signal, because the polar
charges are present and remain constant regardless the degree
of NW bending. Therefore, we can takeEk

(0) ) 0, Di
(0) ) 0.

Consequently, from eqs 7 and 8, we haveσp
(1) ) 0, εp

(1) ) 0,
Dp

(2) ) 0, Ep
(2) ) 0. Equations 6-7 thus become

The physical meaning of these equations can be explained
as follows. Under the different orders of approximation, these
equations correspond to the decoupling and coupling between
the electric field and mechanical deformation: the zeroth
order solution is purely mechanical deformation without
piezoelectricity; the first order is the result of direct
piezoelectric effect that strain-stress generates an electric
field in the NW; and the second order shows up the first
feedback (or coupling) of the piezoelectric field to the strain
in the material.

In our case as for nanowires bent by AFM tip, the
mechanical deformation behavior of the material is almost
unaffected by piezoelectric field in the NW. Therefore, as
for the calculation of piezoelectric potential in the nanowire,
the first-order approximation may be sufficient. The accuracy
of this approximation will be examined in reference to full
numerical solutions of the coupled eqs 1-4.

1.3. Analytical Solution under the Saint-Venant Ap-
proximation. To simplify the analytical solution, we assume
that the nanowire has a cylindrical shape with a uniform cross
section of diameter2a and lengthl. To further simplify the
derivation, we approximate the material elastic constants by
an isotropic elastic modulus with Young’s modulusE and
Poisson ratioν. This has been found to be an excellent
approximation for ZnO (see discussion in section 3). For
the convenience of our calculation, we defineapq

isotropic to be
the inverse of matrixcpq

isotropic. The strain and stress relation
is given by

{σp(λ) ) ∑
n)0

∞

λnσp
(n)

εq(λ) ) ∑
n)0

∞

λn
εq

(n)

Ek(λ) ) ∑
n)0

∞
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(n)
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λnDi
(n)

(5)

zeroth order:

{σp
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(0)
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(0) + κikEk
(1)

(7)

second order:
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(2) ) cpqεq
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(1)

Di
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(1) + κikEk
(2)

(8)
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σp
(0) ) cpqεq

(0) (9)

first order:

Di
(1) ) ekqεq

(0) + κikEk
(1) (10)

second order:

σp
(2) ) cpqεq

(2) - ekpEk
(1) (11)
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In the configuration of the nanogenerator, the root end of
the nanowire is affixed to a conductive substrate, while the
top end is pushed by a lateral forcefy. We assume that the
force fy is applied uniformly on the top surface so that there
is no effective torque that twists the nanowire. By Saint-
Venant theory of bending,17 the stress induced in the
nanowire is given by

where

Equation 13 is the zeroth order mechanical solution to eqs
1, 3, and 12. Because the Saint-Venant principle is used to
simplify the boundary condition, solution eq 13 is valid only
for regions far away from the affixed end of the nanowire.
Here by “far away” we mean a distance large enough in
comparison to the NW diameter. Later, full numerical
calculation shows that it would be safe to use eq 13 when
the distance from the substrate is larger than twice the NW
diameter.

Equations 4 and 10 give the direct piezoelectric behavior.
By defining a remnant displacementDBR as

we have

From eqs 14, 13, 12, and 2.2, the remnant displacement is

It should be noted that it is the divergence ofDBR rather than
DBR itself that inducesEk

(1). If we simply assumeEk
(1) )

(κik)-1Di
R, we would arrive at an absurd electric field with

nonzero curl. Instead, by defining a remnant body charge

and remnant surface charge

Equation 15 will be transformed into an elementary elec-
trostatic problem with the Poisson equation

with charge given by eq 18 on the cylindrical surface of the
nanowire. From eqs 17 and 16, we have

It is very important to note that, in eqs 20 and 21, the remnant
charge is independent of vertical heightz. Therefore, electric
potentialæ ) æ(x,y)) æ(r,θ) (in cylindrical coordinates) is
also independent ofz. (We will drop the superscript(1) for
the first order approximation for simplicity from here.)
Physically, it suggests that the potential is uniform along
the z direction except for regions very close to the ends of
the nanowire. This means that the nanowire is approximately
like a “parallel plate capacitor”, just like we assumed for
nanopiezotronics.5,6

Noting thatκ11 ) κ22 ) κ⊥, the solution of eqs 19, 20,
and 21 is

(εxx
(0)

εyy
(0)

εzz
(0)

2εyz
(0)

2εzx
(0)

2εxy
(0)

) ) ∑
q
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(0) )
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0 0 0 0 0 2(1 + ν)
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(0)î k (14)

∂

∂xi
(Di

R + κikEk
(1)) ) 0 (15)

DBR ) (-
fy

IxxE (12 + ν)e15xy

fy
IxxE (34 + ν

2)e15(a2 - y2 - 1 - 2ν
3 + 2ν

x2)
fy

IxxE
(2νe31 - e33)y(l - z)

) (16)

FR ) -∇‚DBR (17)

ΣR ) - nb‚(0 - DBR) ) nb‚DBR (18)

∇‚(κikEk
(1)î i) ) FR (19)

FR )
fy

IxxE
[2(1 + ν)e15 + 2νe31 - e33]y (20)

ΣR ) 0 (21)

æ )

{ 1
8κ⊥

fy
IxxE

[2(1 + ν)e15 + 2νe31 - e33][κ0 + 3κ⊥

κ0 + κ⊥

r
a

- r3

a3]a3 sin θ,

r < a

1
8κ⊥

fy
IxxE

[2(1 + ν)e15 + 2νe31 - e33][ 2κ⊥

κ0 + κ⊥

a
r]a3 sin θ,

r g a
(22)

2502 Nano Lett., Vol. 7, No. 8, 2007

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条

Gauss06
线条



whereκ0 is the permittivity in vacuum. Equation 22 is the
potential inside and outside the NW.

From eq 22, we have the maximum potential at the surface
(r ) a) of the NW at the tensile (T) side (θ ) -90°) and
the compressive (C) side (θ) 90°), respectively, being

By elementary elastic theory, under small deflection, the
lateral forcefy is related to the maximum deflection of the
NW tip Vmax ) V (z ) l) by18

Thus the maximum potential at the surface of the NW is

This means that the electrostatic potential is directly related
to the aspect ratio of the NW instead of its dimensionality.

For a NW with a fixed aspect ratio, the piezoelectric potential
is proportional to the maximum deflection at the tip.

2. Numerical Results and Discussion.As presented in
section 1.3, we approximately represent the anisotropic elastic
constantcpq by an isotropic onecpq

isotropic ) (apq
isotropic)-1,

which corresponds to modulusE and Poisson ratioν. To
examine the validity of this approximation, we define the
error introduced by this approximation by

For bulk ZnO, we havec11 ) 207 GPa,c12 ) 117.7 GPa,
c13 ) 106.1 GPa,c33 ) 209.5 GPa,c44 ) 44.8 GPa, andc55

) 44.6 GPa,19 the approximating constants areE ) 129.0

GPa andν ) 0.349, with a minimized error ofx|∆c/c|2 )
3.27% . Therefore, our approximation is excellent. The
relative dielectric constants areκ⊥

r ) 7.77 andκ|
r ) 8.91 for

bulk ZnO,20 and the piezoelectric constants aree31 ) -0.51C/
m2, e33 ) 1.22C/m2, and e15 ) -0.45C/m2 measured for
film.21 These parameters will be used in our numerical
calculation.

Figure 2. Potential distribution for a ZnO nanowire withd ) 50 nm andl ) 600 nm at a lateral bending force of 80 nN. (a) and (b) are
side and top cross-sectional (atz0 ) 300 nm) output of the piezoelectric potential in the NW given by finite element calculation using fully
coupled eqs 1-4, respectively, while (c) is the cross-sectional output of the piezoelectric potential given by analytical eq 22. The maximum
potential in (b) is smaller than that in (a), because here the potential in the bottom reverse region is larger than that in upper “parallel-plate
capacitor” regions. (d) gives a comparison of the line scan profiles from both (b) and (c) (blue is for full FEM, red is for eq 22) to show
the accuracy of eq 22 and the approximations used for deriving it.

æmax
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We conducted the calculation based on eq 22 for two
configurations: the first one is ac-axis vertically aligned
ZnO nanowire with smaller diameter grown by vapor-
liquid-solid process; the second is a large size ZnO nanowire
typically grown by chemical approach. In both cases, the
wires are well fixed on the substrate and pushed laterally by
an AFM tip at the top.

In the first case, the wire diameter isd ) 50 nm, length
is l ) 600 nm, and lateral force applied by AFM tip is 80
nN. To further confirm the validity of omitting the higher
order terms in our analytical derivation, we performed a finite
element method (FEM) calculation for a fully coupled
electromechanical system using eqs 1-4 with for a simplified
medium of isotropic elastic modulus tensor and with
cylindrical geometry. The boundary condition assumed is
that the bottom end of the NW is affixed. ZnO was
considered as a dielectric medium. Parts a and b of Figure
2 are the potential distributions calculated by full FEM in
the bent NW as viewed from side and in cross section,
respectively, clearly presenting the “parallel plate capacitor”
model of the piezoelectric potential except at the bottom.
As for the nanogenerator and nanopiezotronics, only the
potential distribution in the upper body of the NW matters.
By use of the analytical eq 22, the calculated potential
distribution across the NW cross section for a lateral
defection of 145 nm (produced by 80 nN deflection force)

is presented in Figure 2c, with the two side surfaces having
(0.28 V piezoelectric potential, respectively. Again we
emphasize that, in eq 22, the potential is independent ofz0

except near the top and the bottom.
To compare the identity of the FEM result with the

analytical result, a line scan was made across the output of
the cross-section potential along the symmetry line following
the lateral deflection direction, and the results are directly
compared in Figure 2d. It is rather astonishing that the
difference is smaller than 6%, unambiguously proving the
accuracy of our analytical solution.

As mentioned before, eq 22 is based on the Saint-Venant
approximation and is thus not valid in the bottom region of
the NW. However, from the FEM solution we see that the
bottom reverse region is small, extending only for less than
twice the nanowire diameter. Therefore, eq 22 is useful even
for nanowires with rather small aspect ratio. The physical
consequence of the bottom reverse region needs to be further
investigated, both theoretically and experimentally. For
example, such a barrier could give rise to interesting effect
in piezoelectric field effect transistor (PE-FET) applications.

A similar calculation has been done for a large size NW
with d ) 300 nm, lengthl ) 2 µm, and a lateral force of
1000 nN. The value of pushing force is estimated based on
the lateral deflection observed experimentally. Analogous to
the case shown for the smaller NW in Figure 2, this large

Figure 3. Potential distribution for a nanowire withd ) 300 nm andl ) 2 µm at a lateral bending force of 1000 nN. (a) and (b) are side
and top cross-sectional (atz0 ) 1 µm) output of the piezoelectric potential in the NW given by finite element calculation using fully
coupled eqs 1-4, respectively, while (c) is the cross-sectional output of the piezoelectric potential given by analytical eq 22. The maximum
potential in (b) is almost the same as that in (a). (d) gives a comparison of the line scan profiles from both (b) and (c) (blue is for full FEM,
red is for eq 22) to show the accuracy of eq 22 and the approximations used for deriving it.
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NW gives a potential distribution of(0.59 V across its cross
section. Again, the analytical solution is within 6% of the
FEM full numerical calculation, clearly proving the validity
of our analytical solution. Therefore, the perturbation theory
we have presented here is an excellent representation for
calculating the piezoelectric potential across a NW, and the
analytical results given by eqs 22-25 can be applied to
quantitatively understand the experimentally measured re-
sults.

It must be pointed out that the elastic modulus and
piezoelectric ceefficient used for the calculations presented
here were adopted from the values measured from bulk and
film. Previous experimental measurements show a reduction
in elastic modulus for ZnO nanowire22,23 and an increased
piezoelectric coefficient (by 200%).24 If these values were
used in above calculations, the potential on the NW surface
would be increased by a factor of 3-4.

From the calculation presented above, 0.3 V is created
between the NW and the AFM tip during mechanical
bending. This voltage is much higher than the thermal voltage
of kBT/e∼ 25 mV, and it is applied to the Schottky barrier
between the NW and the tip and is responsible for driving
the rectifying behavior of the Schottky barrier.

In practice, the received voltage is in the order of 10 mV,
much lower than that calculated theoretically for the fol-
lowing reasons. First, a single NW based nanogenerator (see
Figure 1) can be simplified as a voltage sourceVnw, which
is created by the piezoelectric effect of the NW when
subjected to mechanical deformation, a contact resistance
Rs between the tip and the NW, and an inner resistanceRnw

of the NW. Since the ZnO NW was a bare NW without a
catalyst particle at the tip, the contact resistance (Rc) can be
very large due to the small contact area between the metal
tip and the edge of the NW tip. Therefore, the voltage that
drove the Schottky diode (Vnw) was largely consumed at the
contacted resistance, and only a small portion was received
as the output. Second, the capacitance of the nanogenerator
system (∼1 pF) is much larger than the capacitance of a
single NW (∼fF). The large system capacitance consumes
most of the charges produced by the NW, and the large
system capacitance results in low voltage output, but the
output current should not be affected.

In summery, under a small deflection approximation, we
have applied the perturbation theory to analytically calculate
the piezoelectric potential distribution in a nanowire as
pushed by a lateral force at the tip. The analytical solution
given under the first-order approximation produces a result
that is within 6% from the full numerical calculated result
using a finite element method, clearly establishing the
accuracy and validity of our theory. The calculation shows
that the piezoelectric potential in the NW almost does not
depend on thez-coordination along the NW unless very close
to the two ends, meaning that the NW can be approximately

taken as a “parallel plated capacitor”. This is entirely
consistent to the model established for nanopiezotronics, in
which the potential drop across the nanowire serves as the
gate voltage for the PE-FET. The maximum potential at the
surface of the NW is directly proportional to the lateral
displacement of the NW and inversely proportional to the
cube of length-to-diameter aspect ratio of the NW. The
magnitude of piezoelectric potential for a NW of diameter
50 nm and length 600 nm is∼0.3 V. This voltage is high
enough to drive the metal-semiconductor Schottky diode
at the interface between AFM tip and the ZnO NW, as
assumed in our original mechanism for the nanogenerator.
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