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  Abstract- A simulation for dielectric constant of two-phase 
disordered composites based on a three-dimensional disordered model 
is presented. In this model, the inclusions can be arranged at random 
positions in a composite material that is simulated by 10×10×10 cubic 
cells. Under the quasi-static approximation, numerical calculations are 
performed using the finite element method (FEM). In order to get the 
effective dielectric properties of isotropic composites, an averaging 
method is adopted because each topological structure of a given 
disordered model is anisotropic. Then the effect of the permittivity 
contrast between the inclusions and the matrix phase of composites is 
studied. The numerical results obtained by the disordered model are 
also compared with those obtained by the classical mixing rules and 
the conventional periodic models. 

 
I.    INTRODUCTION 

 
  Composite materials have been widely used for electrical, 
mechanical, optical applications due to their excellent 
properties [1]. Thus, it is of great importance to calculate their 
dielectric properties in good precision before production. The 
dielectric properties of mixtures have attracted many attentions 
in several decades, and a number of researches have been 
carried out on the calculation of dielectric properties of 
composite materials. L.C.Shen et al. [2] investigated the static 
conductivity and dielectric constant of two-component periodic 
composite material by the Fourier expansion technique. 
B.Sareni et al. presented a periodic simulation model [3] and a 
random model [4] to calculate the effective dielectric constant 
of composite materials based on the boundary integral equation 
method. In recent years, E.Tuncer et al. [5-7]  have published a 
series of articles on the modeling of the complex dielectric 
constant based on the finite element method (FEM). Most of 
the previous calculations are based on the model of regular 
distribution of inclusions in a composite (periodic model), 
which is not realistic. Although, the information obtained from 
calculations based on the periodic model provides an 
interesting study and is helpful to predict the dielectric 
properties of composites, random distributions should be more 
realistic since the distribution within real composites is 
normally highly irregular. Several researchers have 
investigated the calculation of the disordered composites. 
There are several studies considering the random positions of 
inclusions.  
  The aim of this paper is to report a numerical three-
dimensional calculation for dielectric constant of two-phase 
disordered composites, in which the inclusions and matrix 
phase with cubic shapes occupy positions randomly in a big 
cube consisting of 10×10×10 cubic cells. The dielectric 
constant of inclusions is ε1 and the dielectric constant of host 
material is ε2. Both materials are homogenous, lossless, and 

isotropic. The interaction of inclusions plays an important role 
when the concentration of inclusions is high. When the 
concentration of inclusions is increased, there appear 
overlapping inclusions. In this model, the cubic cells of 
inclusions can be overlapped irregularly, thus there will be 
many types of interconnect inclusions to simulate the realistic 
composites at a given volume ratio, especially at high 
concentration of inclusions. The FEM is applied to calculate 
the electric filed distribution in the composite material and the 
effective dielectric constant of composites is derived. The 
effective permittivity as a function of the volume fraction of 
inclusions is also calculated by this method. The dependence of 
the orientation of disordered materials and the effect of 
permittivity contrast are investigated in our simulation. The 
calculated dielectric properties are also compared with the 
classic mixture rules and previous periodic models. 

 
II.  CALCULATION METHOD 

 
A.    Preconditions for calculation 

In our physical model, there are two preconditions for the 
composite.  

(1) The constituent of permittivity ε1 occupying the volume 
V1 is embedded in the region V2 with the permittivity ε2. We 
assume that the net charge density equals to zero in the total 
spatial domain of V1 and V2.  

(2) We suppose that the scales of inclusions and matrix 
phase are much smaller than the wavelength. In this case, the 
composite can be regarded as a macroscopically isotropic 
material, in a quasi-static approximation. 
 
B.    Physical model 

The three dimensional structure presented in this article is 
composed of 10×10×10 cubic cells for simulating the inclusion 
and matrix elements. The inclusion elements are placed 
randomly in the matrix material by means of generating a 
series of pseudorandom numbers which note the coordinates of 
the inclusion elements. Fig.1(a) shows a three-dimensional 
structure sample with 30% volume fraction of inclusions. The 
presented structure is used to calculated the effective 
permittivity of two-phase disordered composites with the 
concentration of inclusions (f) from f =0 to f =0.5. Above the 
concentration of f =0.5, the inclusion and matrix elements can 
be interchanged each other. Thus, the concentration of f >0.5 
will be changed to f <0.5. 

When the concentration of inclusions is increased, there will 
be overlapping inclusions. In this case, the mutual interaction 
of particles is important for the calculation of effective 
permittivity of composites. According to the calculation 
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structure shown in Fig.1(a), the elements of inclusions can be 
overlapped irregularly, thus there will be many types of 
overlapping inclusions to simulate the realistic composites at a 
given volume fraction. Fig.1(b) shows the inclusion cells 
according to the same topology shown in Fig.1(a). Moreover, 
the overlapping inclusions can also be simulated by this 
calculation model even in the case of low concentrations. 
When the volume fraction of inclusions is low, the inclusions 
in the real composites may be overlapped in a little probability. 
However, the overlapping inclusions in the case of low 
concentrations can not be fulfilled by the conventional periodic 
models, in which the overlap occurs only in the case of high 
concentrations and the size of the inclusion needs to exceed a 
critical value. 

 

 
(a)                                                      (b) 

Fig.1. A three-dimensional cubic structure with 30% volume fraction of 
inclusions. It is composed of 10×10×10 cube cells in which the inclusions 

occupy the positions randomly in the matrix material: (a) 10×10×10 cube cells 
structure composed of both constituent materials, (b) inclusion elements 

corresponding to the same topology shown in (a). 
 
C.    Finite-element method 

Considering absence of charge density in the composites, 
numerical solutions of electrostatic problems in a 
nonconducting material are based on the solutions of Laplace’s 
equation 

div( grad ) 0ε ϕ⋅ = ,                                                              (1) 
where φ is a potential distribution in the calculated three-
dimensional domain.  

FEM is used to solve the equation and obtain the electric 
filed distribution in the material. Fig.2 shows the boundary 
conditions of the three-dimensional structure.  
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Fig.2. Boundary conditions related to the three-dimensional structure 

 

The material is exposed to a static electric field, which is 
generated by a voltage across the opposite faces of the cube, 
and the other faces of the cube meet the requirement of 
∂φ/∂n=0. By dividing the domain into finite elements, the 
calculation of the potential distribution for each element is 
carried out by interpolation of the potential φ and its normal 
derivative ∂φ/∂n with the corresponding nodes [8, 9]: 
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where λi represents the interpolation functions. 
The solutions of FEM are carried out by the commercial 

FEM software Ansys. In the software, the region of interest is 
meshed using an adaptive meshing technique. Once the 
potential distribution is known, the effective permittivity of a 
composite is calculated by the energy balance method which 
has been used in the earlier simulations. The electrostatic 
energy for each element can be expressed as 

( ) ( )2 2( ) 1 2
k

e kS
W k x y dxdyδ ε ϕ ϕ⎡ ⎤= ∂ ∂ + ∂ ∂⎣ ⎦∫ ,        (3) 

where εk and Sk are the dielectric constant and the surface of the 
kth element, respectively. The total electrostatic energy in the 
entire composite can be calculated by summation of all the 
elements, i.e.,  

( )e e
k

W W kδ= ∑ .                                 (4) 

The composite material can be regarded as a capacitor that 
stores the electrostatic energy when it is exposed to the electric 
field. The stored electrostatic energy of the capacitor can be 
calculated macroscopically by 

2
2 1

1 ( )
2e eff

SW
d

ε ϕ ϕ= −                            (5) 

where S is the area of each surface exposed to the electric field 
and d is distance between them. 
 
D.    Statistical mean of a given structure 

For a given topological structure exposed to the electric 
fields of orthogonal orientations, the electric field distributions 
in the calculated domain are not same and the obtained 
dielectric constants in directions x, y and z (εx, εy and εz) are 
different. Thus, an anisotropic disordered composite is 
simulated, instead of a macroscopically one. The calculated 
effective permittivity depends on the orientation of the 
disordered model.  

In order to make up the disadvantage of the orientation of 
the disordered model, the effective permittivity is calculated by 
a method of statistical mean. The processes of calculating the 
mean values are comprised of two steps. At first, for a given 
volume fraction, the effective permittivity of a topological 
structure i ( i

effε ) is computed by taking a statistical mean of the 
permittivity in the three directions x, y, and z: 

( )1
3

i i i i
eff x y zε ε ε ε= + + .                                 (6) 
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Then, in order to get a better estimate of the effective 
permittivity, the arithmetical mean of the calculated statistical 
means i

effε  for a number of topological structures is computed, 
i.e., 

1 N
i

eff eff
iN

ε ε= ∑                                         (7) 

where N is the number of the topological structures for a given 
volume fraction, equal to 10 in our calculation. 

This procedure may be justified by the fact that each i
effε  is 

close to the mean value of the effective permittivity at a given 
volume fraction of inclusions, and the relative errors of i

effε  to 
their mean value are small. Fig.3(a) shows the numerical 
results of i

effε  and their mean values as a function of volume 
fraction f in the case of 0≤f≤0.5. Fig.3(b) shows the relative 
errors of i

effε  to their mean values. It can be seen that the 
relative errors locate in the range of ±5%, especially they are 
smaller than 1% in the cases of ε1=10 and ε2=1, and ε1=3 and 
ε2=1. So, this procedure for calculating the effective 
permittivity is valid, and the numerical results reported in the 
rest subsections are calculated by performing this procedure. 
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Fig.3. The calculated effective permittivity and the relative errors: (a) the 
effective permittivity as a function of volume fraction f due to 10 different 

types of topological structures at each f in the case of ε1=30 and ε2=1, (b) the 
relative errors of the calculated permittivities to their mean value at each 

topological structure in the cases of ε1=30 and ε2=1 (circles), ε1=10 and ε2=1 
(triangles), and ε1=3 and ε2=1 (diamonds). 

 
III.   CALCULATION RESULTS 

 
A.    Effect of permittivity contrast 

If the mixture is very dilute or very dense, or if the 
permittivity contrast ε1/ε2 is close to one, the classical mixing 
rules and the periodical models are valid for calculating the 
effective permittivity in a good accuracy. But the permittivity 
contrast between constituents of composites may be very large 
in realistic materials. This case will result in the failure of all 
the classical mixing rules and periodical models in obtaining a 
reliable effective permittivity14. Therefore, it is necessary to 
study the effect of permittivity contrast of constituent 
components on the calculated effective permittivity. 

Based on the disordered model, the effective permittivity of 
composites is calculated in the cases of three different values of 
permittivity contrast: ε1=3 and ε2=1, ε1=30 and ε2=1, and ε1=30 
and ε2=1. The numerical results are shown in Fig.4(a)-4(c), 
respectively. It should be pointed out that the distributions of 

electric field have no significant change due to different 
permittivity contrast at a given topological structure. However, 
the orientation of the disordered model is sensitive to the 
permittivity contrast. The deviation of εx, εy and εz will grow in 
the case of increasing the permittivity contrast. Moreover, the 
deviation between i

effε  and εeff becomes bigger when the 
permittivity contrast increases. The result can be checked by 
Fig.3(b). The relative errors are very small (<5‰) in the case 
of ε1=3 and ε2=1, while the biggest of them is near to 1% when 
ε1=10 and ε2=1, is about 5% when ε1=30 and ε2=1. So, for a 
low permittivity contrast of components, the effective 
permittivity of composites is not affected by the disordered 
topological structure, while it is greatly dependent on the 
topological structure for a high permittivity contrast. It 
indicates that the conventional periodic model cannot obtain a 
good estimate of the effective permittivity in the case of high 
permittivity contrast. 
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Fig.4. Comparison of the numerical results with the previous approaches: (a) 
ε1=3 and ε2=1, (b) ε1=10 and ε2=1, (c) ε1=30 and ε2=1. PS represents the results 

obtained by the periodic sphere model of SC and PE represents the results 
obtained by the periodic ellipsoid model of SC [3, 4]. In the PE model, an 
ellipsoid with b=c=a/4 is placed at the center of a cuboid. In this case, the 

depolarization factors Lx, Ly, Lz are 0.0754, 0.4623 and 0.4623, respectively. 
 

B.    Comparison with previous approaches 
Fig.4(a)-4(c) show the effective permittivity as a function of 

volume fraction of inclusions obtained by the disordered model, 
the classical rules and the conventional periodic models for 
three different values of permittivity contrast. In Fig.4, it can 
be seen that the predictions from different models are very 
close when the volume fraction of inclusions is less than 10% 
which can be regarded as the dilute limit. In the case of low 
permittivity contrast, the effective permittivity values obtained 
by the disordered model are in good agreement with the values 
predicted from the Maxwell-Garnett rule, the Bruggeman rule, 
and the conventional periodic models. As the permittivity 
contrast increases, the numerical results obtained by the 
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disordered model and the Bruggeman rule are much bigger 
than those obtained by the Maxwell-Garnett rule and the 
conventional models. The disordered model and Bruggeman 
rule get similar results of effective permittivity, which can be 
seen in Fig.4(b)-4(c). Therefore, the validity of the numerical 
results obtained by different models depends on the value of 
the permittivity contrast and the volume fraction of inclusions. 
The Maxwell-Garnett rule is based on the assumption that the 
inclusions are spherical and the distance between neighboring 
spheres is much larger than their radius. Thus, for high 
permittivity contrast, it can only be used at low volume fraction 
(f≤10%). 

By comparing the effective permittivities obtained by the 
disordered model with those obtained by the periodic models, 
we can find that the arranged type of inclusions has an effect 
on the dielectric properties of the composites. For a low 
permittivity contrast, the effective permittivity is not affected 
by the arranged type of inclusions, and the disordered model 
and the periodic models get similar results. Increasing the 
contrast value shows its influence, i.e., in this case the 
deviation between the disordered model and the periodic 
models becomes greater. B.U.Felderhof has found that in the 
case of high permittivity contrast, the response of composites 
to a potential is coupled by multipole modes that are not 
contained in simple dipole mixture [10]. The periodic models 
can not succeed in simulating the multipole response, while the 
disordered model can fulfill this simulation. This is supposed to 
be the reason of the deviation of numerical results between the 
disordered model and the conventional models in the case of 
high permittivity contrast. Of the previous approaches, the 
Bruggeman rule appears to be closest to the numerical results 
obtained by the disordered model, even in the case of high 
permittivity contrast. The inclusions occupy random positions 
in the matrix phase of composites in the presented disordered 
model, thus the clustering effects will be allowed for the 
inclusion cells. The identical result has been found that the 
Bruggeman prediction is close to the simulations due to the 
clustering effects, which has been reported in [11].  
 

IV.   CONCLUSIONS 
 

In summary, we have presented a simulation method for the 
effective permittivity of two-phase composites based on a 
three-dimensional disordered model. In this model, the 
inclusions can occupy random positions in a composite 
material, which is simulated by 10×10×10 cubic cells. In our 
calculation, the FEM is used to calculate the electric field 
distributions in the developed model, and then the effective 
permittivity is derived on the basis of the energy balance 
method. Three different values of permittivity contrast of 
components have been considered. The dependence of the 
effective permittivity on the orientation of the disordered 
model is studied. According to the orientation, an averaging 
procedure is adopted to get the macroscopical effective 
permittivity of composites in a good accuracy. The effect of 
permittivity contrast on the obtained effective permittivity has 
also been studied. And the numerical results are compared with 
the classical mixing rules and the conventional periodic models.  

Our calculations confirm that the disordered model can be 
applied to high permittivity contrast and large volume fractions 
of inclusions, while the Maxwell-Garnett rule and the 
conventional periodic models fail to predict the effective 
permittivity, because they are not able to consider the 
overlapping of inclusions. The numerical results obtained by 
the disordered model are close to those obtained by the 
Bruggeman rule due to the clustering effects. Although the 
presented disordered model is relative close to realistic two-
phase composites, there is a long way to describing the 
dielectric properties of realistic composites. Developing a 
similar topological structure to the realistic mixtures is a great 
challenge. The interface between the inclusions and the matrix 
phase has a great effect on the dielectric properties of 
composite material. How to introduce them to simulations will 
be our next research subject. 
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