- 0.001 A point current source
- $1 \mathrm{e} 10 \mathrm{~S} / \mathrm{m}$ conductivity inside cylindrical electrode
- 0.2 conductivity medium
- All meshed to 0.00002 .

Results of integrating charge density over various shapes:

- A cylinder of typical electrode size
o Cylinder is maximum shape (with other shapes inside it)
- 0.001472 entire cylinder
- 0.0010192 if integrate over just curved side
- 0.00045284 just top and bottom

0 If cylinder contained within sphere of same conductivity

- 0.00135 entire cylinder
- 0.000856 if integrate over just curved side
- 0.000278 just top and bottom.
- A sphere that just encompasses the cylinder
0.0 .000999 (if everywhere inside sphere has same conductivity as electrode)
$0 \quad 0.0010571$ (if volume between sphere and the cylinder is same conductivity as medium)
- A sphere just inside the cylinder (same radius $=0.000648$)
$0 \quad 0.0010018$
- A smaller sphere inside the cylinder (half the radius of the cylinder $=0.000324$)
o 0.0010017
- A cube with edge length half equal to the radius of the cylinder
00.000988
- A rectangular box of dimensions $0.00065 \times 0.0015 \times 0.01096$ (fits inside cylinder)
o 0.0016307 whole box
o 0.0014498 just sides (not top and bottom in same plane as cylinder top/bottom)
- Ellipse (same height as cylinder but short axes equal to radius of cylinder)
o 0.0011638
- Small cylinder
o 0.0011640 entire cylinder
o 0.00086023 if integrate over just curved side
o 0.00030374 just top and bottom

Testing out different methods of current source

Geometry: Sphere of radius 0.000648
Surface Area $=4 *{ }^{*} i^{*} r^{2}=5.309 \mathrm{e}-6$
Apply a Boundary Current Source of $\mathrm{I} / \mathrm{A}=0.001 / 5.309 \mathrm{e}-6$

- Integrate normJ (what I was doing above with point source)
00.00048436
- Integrate nJ (this is not available option for point source method, but works here) $0 \quad 0.00099367$

Apply Floating Potential of $\mathrm{I}=0.001 \mathrm{~A}$

- Integrate normJ (what I was doing above with point source)
$0 \quad 0.0004865$
- Integrate nJ (this is not available option for point source method, but works here)
$0 \quad 0.000973$

Create cylindrical shell with Floating Potential of I $=0.001 \mathrm{~A}$

- Integrate normJ (what I was doing above with point source)
00.0004499
- Integrate nJ (this is not available option for point source method, but works here)
$0 \quad 0.0008998$

