Chapter 9
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fElastlc Cylmders

Prismatic Bar Subjected to End Loadings

Semi-lnverse Method

Assume:c, =o, =1, =0

Equilibrium Equations=

Compatibilty Equations =

d’c, ©0’c, 0%c, 0%

ox*  oy> oz oxoy
Integrating =

o, =Cx+C,y+C,z+C, xz - CayZius
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Extension of Cylinders

Assumptions

- Load P, is applied at centroid of cross-
section so no bending effects

- Using Saint-Venant Principle, exact end
tractions are replaced by statically
equivalent uniform loading

- Thus assume stress o, is uniform over any
cross-section throughout the solid

B o, =%,IXZ =1, =0

Using stress results into Hooke’s law and combining with the strain-

displacement relations gives VP
u=——=
o _ vk , o _ VR , ow_ R, Integrating and dropping AE
ox AE oy AE o0z AE rigid-body motion terms 2 _ B !
au av 0. av oW 0 5\/\/ ou 0 such that displacements AE
ay 8X 82 oy Ox 62 vanish at origin w P,

AE
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Torsion of Cylinders

Guided by Observations from Mechanics of Materials

e projection of each section on x,y-plane rotates as
rigid-body about central axis

« amount of projected section rotation is linear
function of axial coordinate

e plane cross-sections will not remain plane after
deformation thus leading to a warping displacement
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Torsional Deformations

u=-rpsind =—py
vV =r[3cos0 = 3x

B=oaz
x o = angle of twist per unit length
u=-ayz
) V=o0dXz
w=w(X,Y)

W = warping displacement

Now must show assumed displacement form
will satisfy all elasticity field equations
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Stress Function Formulation

e,=¢e, =e,=¢, =0

U:—(Xyz X y z GXZGy——-GZ:TXy:O
1(ow oW
V = oXZ e =—| ——q — g .
» Xz 20 oOx y » Ty H ox ay
w = w(X,Y)
e = E @ + aX T, = U — 58 oX
yz 2 ay yz
Equilibrium Equations Compatibility Relation
0 ot,,
ot,, +8ryz i T, Oy _ o
oX oy oy OX
. 9 o9
Introduce Prandtl Stress Function ¢ = ¢(x,y) : T = E T
Equilibrium will be identically satisfied and compatibility relation gives
o’hp  0°
20 = <2|) + (l) = -2ua
ox° oy

a Poisson equation that is amenable to several analytical solution technigues
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Boundary Conditions
Stress Function Formulation

On Lateral Side: S
T =g +3n, +1,M,=0=0=0
T, =30, +om, +7,A=0=0=0
T =t,N +1,N, +c A =0=

@%Jr@ﬂ:o = @:O = ¢ =constant=0
ox ds oy ds ds

On End: R (z = constant)
P = "RTX”dxdy =0

P, = | RTy”dxdy =0

B = "RTZ”dxdy =0
L= "R yT "dxdy =0

M
M. = "R XT "dxdy =0
M

=[] Oy —yTdxdy =T = T =2[[_¢dxdy
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Displacement Formulation

a 2 2
5sz+ TVZ:O = a\£v+6\;v:0
OX oy OX oy

Displacement component satisfies Laplace’s equation

On Lateral Side: S

n
T, =1,n, +1,N, +0,N, =0=

(@_ aj + @—i—xa n,=0 or d—W—OL( n,—xn,)
- y Y y = Il yny y
OnEnd: R
M, = HR (XT,' = yT,)dxdy =T =

- OW  OW
T = u"[R[oc(xz +y2)+ XE— y&jdxdy

T=aJ J :HJIR X*+y +—@—18W]dxdy TorsionalRigidity

o 0y o OX
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Formulation Comparison

A

Stress Function Formulation

2 2
V2¢=a—(l)+a—(l)=—2uoc e R
ox- oy

6=0 ¢S

Relatively Simple Governing Equation
Very Simple Boundary Condition
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Displacement Formulation
o*w  o0*w
> =0 eR
oX~ oy

(5rpe{3
——Yya n,+| —+Xa |n,=0 €3S
OX oy y

Very Simple Governing Equation
Complicated Boundary Condition
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Multiply Connected Cross-Sections

A

Boundary conditions of zero tractions on all lateral surfaces
apply to external boundary S, and all internal boundaries
S,, - .. Stress function will be a constant and displacement
be specified as per (9.3.20) or (9.3.21) on each boundary S,
i=0,1,...

d=¢, €S, or (;—a\:(v—yajnx+£%+m}ny:0 € S;

where ¢; are constants. Value of ¢, may be arbitrarily chosen
only on one boundary, commonly taken as zeroon S, .
Constant stress function values on each interior boundary are found by
requiring displacements w to be single-valued, expressed by

v

ifs dw(x,y) =0 mp LTdS =2u0A, where A, is area enclosed by S,

Value of ¢, on inner boundary S; must therefore be chosen so that relation is satisfied. If cross-
section has more than one hole, relation must be satisfied for each hole.
Boundary conditions on cylinder ends will be satisfied, and resultant torque condition will give

T =2[ ¢dxdy +2¢,A
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Membrane Analogy

Stress function equations are identical to those governing static deflection of an elastic membrane
under uniform pressure. This creates an analogy between the two problems, and enables particular
features from membrane problem to be used to aid solution of torsion problem. Generally used to
providing insight into qualitative features and to aid in developing approximate solutions.

Deflected Membrane Ndy

z Ndy
/'7
Nd.
* T oz 9’z

oz 6_ + _de

b pdxdy X Ox

OoX

Membrane Element Ny
X
> X

Static Deflection of a Stretched Membrane

Equilibrium of Membrane Element

Membrane Equations Torsion Equations

7GR 2,0 Y
>y
aX 8y N aXZ ay2
z=00nS é=00nS
vzijzdxdy T:ZHRd)dxdy

Equations are same with: ¢ =z, p/N =2ua, T=2V
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Torsion Solutions Derived from
Boundary Equation

Ay

f(x,y)=0
If boundary is expressed by relation f(x,y) = 0, this

suggests possible simple solution scheme of
S expressing stress function as ¢ = K f(x,y) where K'is
arbitrary constant. Form satisfies boundary
condition on S, and for some simple geometric
shapes it will also satisfy the governing equation
with appropriate choice of K. Unfortunately this is
not a general solution method and works only for
special cross-sections of simple geometry.

v

Boundary - Value Problem

2 2
%+%=—2pa eR

d=0eS
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Example 9.1 Elliptical Section

A
y
X2 y2
—2+—2 :1
a b

b .

x

v

2 2
Look for Stress Function Solution ¢ = K(X—2+g—2—1)
a

a’b’ua

¢ satisfies boundary condition and will satisfy governing governing if K =— 2 T

Since governing equation and boundary condition are satisfied, we have found solution
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Elliptical Section Results

(Stress Function Contours)

Stress Field

2a’uo 2Ty
o B 3
a‘+b nab
- 2b%po - 2Tx
B -+ b nba®
2T [x* y?
2 2
T= [T, +T, =——.—+—
“ ¥ gab\Va* b
2T —
g = T(00) = — T=
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(Displacement Contours)

Displacement Field

2 2
T —a%)

na’b’p ¥

Loading Carrying Capacity

Angle of Twist
2a’b’pa (1 . 1 4
oy (az HRX dxdy+b—2ﬂRy dxdy—HRdxdy
T ma’b’po < T(a® +b?)
a’ +Db? ma’b’p
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Elliptical Section Results
3-D Warping Displacement Contours

10.3

0.2

0.1
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Example 9.2 Equilateral Triangular Section

A Yy

2a a

v

For stress function try product form of each boundary line equation
o= K(x—\/§y+2a)(x+\/§y+2a)(x—a)

_ =

¢ satisfies boundary condition and will satisfy governing governing if K = =

Since governing equation and boundary condition are satisfied, we have found solution
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Equilateral Triangular Section Results

(Stress Function Contours)

Stress Field

Ty :&(X_a)y
a

| R LO 2
— (- | 25%—
" 261( y©)

3 53T
T, (a,0) = Euoca T
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(Displacement Contours)

Displacement Field

(04
w=—y(3x* —y?)
ba

Loading Carrying Capacity

Angle of Twist

T = pnoat = gpal

5f
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Additional Examples That Allow Simple
Solution Using Boundary Equation Scheme

y=va®+cx® 4y
a x = /a? +cy?
a »
X
X =—Ja? +cy?
y =—/a® +cx?

Section with Higher Order
Polynomial Boundary (Example 9-3)

d=K(@* —x*+cy?)(@* +cx* —y?)

o o
e S 4

T = T(£8,0) =1(0,1ta) = \/Euoca
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A
r=2acos0

Circular Shaft with Circular
Keyway (Exercise 9-22/23)

)

(Tmax)keyway S 2“0(,8, _9
(Tmax )solidshaft HOLa

.. Stress Concentration of 2

2aco0s0

b= (0 1)L~

Asb/a—0




Examples That Do Not Allow Simple
Solution Using Boundary Equation Scheme

General Triangular Section Rectangular Section
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Example 9.4 Rectangular Section
Fourier Method Solution

y4 ) . .
Previous boundary equation scheme will not create a

stress function that satisfies the governing equation.
b Thus we must use a more fundamental solution
technique - Fourier method. Thus look for stress

a » function solution of the standard form

O=¢,+¢, Wwith ¢,(x y)=pa(@®-x?)
homogeneous solution must then satisfy
V2%, =0, ¢,(+a,y)=0, ¢,(x=b)=—pa(a?-x?)

Separation of Variables Method m) ¢, (X, y) = X(X)Y (y) =) @Jray—(b_—ma

nmwy l 2 (n-1)/2 ij
X, B, cos—cosh B, =—-32uca“ (-1 /| n°=® cosh——
= ¢n(xY) = z: o, COh—~ B, =—32uaa’(-1) ( -
s o 32uaa® & (- N7X nmy
= — — h_
¢ =pa(a —x°) - E . e CcoS > Ccos >
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Rectangular Section Results

Stress Field
e Lojiaa i D" cos 7 gjnh 1Y
¥ 8y TCZ n=1,3,5-- n2 COSh Lﬂb a a
2a
= G 210X — e i OIS sin % cosh Y
5 OX TCZ n=1,3,5- n2 cosh Lﬂ:b 2a a
2a
16pca & 1
T =T, (80)=2n0a- Mz Z -
=135 n? cosh ——
2a

Loading Carrying Capacity/Angle of Twist

T

3 4 )
e 16paa’d 1024p5toca Z iS o nnb
3 T n=135.. N 2a
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Rectangular Section Results

)

)

(Stress Function Contours)

(Displacement Contours, a/b = 0.9) (Displacement Contours, a/b = 0.5)
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Torsion o‘fyThin Rectangular Sections (a<<b)

Investigate results for special case of a very thin
rectangle with a << b. Under conditions of b/a >> 1

coshnib — o0 and tanhn—nb —1
2a 2a

v

Torsion of sections composed of thin
rectangles. Neglecting local regions where
rectangles are joined, we can use thin
rectangular solution over each section.
Stress function contours shown justify these
assumptions. Thus load carrying torque for
such composite section will be given by

N
T = %paz a’b.
i=1

(Composite Section) (Stress Function Contours)
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Example 9.5 Hollow Elliptical Section

| - For this case lines of constant shear stress
+ ES y ——|——:1 o o . . e
(ka)>  (kb)? aZ b’ coincide with both inner and outer boundaries,

and so no stress will act on these lateral
_\ . surfaces. Therefore, hollow section solution is

» found by simply removing inner core from solid
&_/ solution. This gives same stress function and
stress distribution in remaining material.

2112 2 2
e
a“+b“\la“ b

a’b’no (k2 il )

Constant value of stress function on inner boundary is ¢; =— 2
_|_

Load carrying capacity is determined by subtracting load carried by the
removed inner cylinder from the torque relation for solid section

na’b*uo o n(ka)® (kb)®pot . Tpo

T: —
a’+b®>  (ka)2+(kb)2  a’+Db?

a®h3(1—k*)

2T 1
nab?® 1-k*

Maximum stress still occursatx=0and y=2b Tox =
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Hollow Thin-Walled Tube Sections

__________ 4C Membrane

Tube Centerline

b,
Al B
(Section aa)
With t<<1 implies little variation in membrane slope, and BC can be approximated (1)0
by a straight line. Since membrane slope equals resultant shear stress 1=

Load carrying relation: T = Z_UR ddxdy+2¢ A = Z(A%’j +20,A =20, A,

where A = section area, A, = area enclosed by inner boundary, A, = area enclosed by centerline

.
Combining relations Bp 1= TAC'[
_ TS, _
Angle of twist: fsrds =2u0A, = o= 4A\:2 : where S, = length of tube centerline
c H
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Cut Thin-Walled Tube Sections

Cut creates an open tube and produces significant changes to stress function,
stress field and load carrying capacity. Open tube solution can be
approximately determined using results from thin rectangular solution.
Stresses for open and closed tubes can be compared and for identical applied
torques, the following relation can be established (see Exercise 9-24)

3T
T 2 T
OpenTube a-As v AC . OpenTube
e - 6— , butsince A, >> A, => ———— >>1 = 75,.11upe > TelosaiTube
7:ClosedTube . z-ClosedTube
2At

.. Stresses are higher in open tubeand thus closed tubeis stronger
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Torsion of Circular Shafts of Variable Diameter

Tx

Displacement Assumption
u=u,=0
Uy = Uy(r,2)

Equilibrium Equations or ol %2 o

2
G‘P:_rag(u_ej:_r_rre

Stress Function Approach oz or\r H = 'Y 30¥ 4 o 0
a_T_rggu_e_ﬁT or> ror ozt
or oz\r) pn
Boundary Condition Load Carrying Torque
i(a&y 1Tk Ej —0= I _ 0= w_constant T =2np['V(R(2),2) - ¥ (0,2)]
r2\or ds oz ds ds
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Conical Shaft Example 9-7

r’+z>2

= COS ¢ = constant on boundary

r A \

Stress Function Solution

y4

yA

1 & T
¥Y=C > > g 2 213/2 o= 2 1
VI° +2 (r+2z%) 2nu(3—COS(p+3COSS(p)

Stresses
2

A Cur

T = — (rz kL Z2)5/2

Curz
To =~ (I‘2 i Z2)5/2

Elasticity Theory, Applications and Numerics
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Displacement

Uy =— Gl +or
0 3(r2 Bt Z2)3/2
or is rigid-body rotation about z-axis and
® can be determined by specifying shaft

rotation at specific z-location
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Conical Shaft Example 9-7 ¢ = 30°
Comparison with Mechanics of Materials

Max Shear Stress Comparison

0.06 f :
----- Mechanics of Materials
0.05 Elasticity Theory | |
‘\
\
\
\
\Y
0.04 N
\
\
— AN
~ \
\\
& 003 \
N \‘
\\\
0.02 AN \\
\\\~
\\
\\\N
0.01 S~
\Q
&---—-Q
0
4 5 6 7 8 9 10
z
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Numerical FEA Torsion Solutions

CRRX
R

K

X

X
s,

3,
'

'
W,

X
aa Tt

(Stress Function Contours)

(Stress Function Contours)

(4624 Elements, 2430 Nodes)  (Stress Function Contours)
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Flexure of Cylinders

Consider flexure of cantilever beam of
arbitrary section with fixed endatz=0
and transverse end loadings P, and P, at
z=+. Problem is solved in Saint-Venant
sense, so only resultant end loadings P,
and P, will be used to formulate boundary
conditionsatz=".

From general formulation o, =c, =1,, =0 , and motivated
from strength of materials choose o, = (Bx + Cy)(l — 2),
where B and C are constants. Stresses t,, and t,, will be
determined to satisfy equilibrium and compatibility
relations and all boundary conditions.

ot
Remaining equilibrium equation ;;Z + 8;//2 — (Bx + Cy) = 0 will be identically

_ OF i By 2
satisfied if we introduce stress function F(x,y) such that T = 5 X
oF 1
1, =——+=Cy?
= o
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Flexure Formulation

Remaining Beltrami-Michell Compatibility Relations

) LR
oy 1+v

——(VZF) ey
1+v

m) V°F :ﬁ(Cx—By)—Zuoc

Zero Loading Boundary Condition on Lateral Surface S

dy dx
rn+rn_0# ___|32 Cy =
ds (&2 ds d)

Separate Stress Function F into Torsional Part ¢ and Flexural Part s

F(X, y) =0(X y) +w(X,Y)

A% 4
V2$ =—2ua in R VZWZF(CX—By) in R
do d , d
—=00nS ay 1 ay 2_
ds T 2(B - —Cy )on S
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Flexure Formulation

General solution to V*y = -t (Cx—By) =
1+v
1 v 3 3
v(x,y) = f(Xx,y)+=——(Cx* —By°) where V?f=0
61+v

Boundary Conditions onend z= ¢

PI, P,
[ z.dxdy =P, Bl +Cl_=-P B = - :
R y Xy X = IXIy—IXy
[ z,.dxdy =P, Bl,, +Cl, =-P, - __ RIS

L =S

where [, ,and /,, are the area moments of inertia of section R

-.-J.R [XTyZ - yTXZ]dXdy = Xo Py I yo Px -

1 0 0
oJ +”R(E(ny2 — Bx?y) —(x 8\)|(j +y a\)‘/j)jdxdy =X%,P, = Y. P

where J is the torsional rigidity — final relation determines angle of twist o
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Flexure Example - Circular Section with No Twist

1 |
- 1
A 1
e 1 1
, 1 1
1 ’
1 ’
| ’
| ’
X l e
y .

Vy=————rcosf 10w 1P 126in%0 onr=a
1+vl, add 21,
B ion P 3+2v 2%x 1+2v xy? + 1-2v e
ution: ' =-—|- - ——————
YT T8y s+ | 24(e)
. P 1+2vxy
A 1+
Stress Solution: P 3+2v 1- 2v P 3+2v
‘Cyz [a2 I y2 ] - T Tyz (O’O) 7 2
8(1+v) 3+ ma” 2(1+v)
o, =——y(l-2) . i _ A
2 y Strength of Materials: To ==—5
I, 3 ma
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