Starting with the Young-Laplace equation, we have:

$$
\begin{equation*}
\Delta p=-\gamma \cdot \hat{n} \tag{1.1}
\end{equation*}
$$

Recognizing $\hat{n}=\vec{\nabla} f$, for the surface defined by f simplifies the previous expression to:

$$
\Delta p=-\gamma \nabla^{2} f
$$

Expanding the previous expression yields (assume symmetry around θ):

$$
\begin{aligned}
\Delta p & =-\gamma\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{\partial^{2} f}{\partial z^{2}}\right] \\
& =-\gamma\left[\frac{1}{r}\left(r \frac{\partial^{2} f}{\partial r^{2}}+\frac{\partial f}{\partial r}\right)+\frac{\partial^{2} f}{\partial z^{2}}\right]
\end{aligned}
$$

Which can be rewritten as:

$$
\begin{equation*}
\Delta p=-\gamma\left(\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{\partial^{2} f}{\partial z^{2}}\right) \tag{1.2}
\end{equation*}
$$

At this point, I see the general form is comparable to the weak condition in the square droplet case: http://www.comsol.com/community/exchange/121/, which has:

$$
-\mu[\operatorname{test}(u T r)+\operatorname{test}(u) / r+\operatorname{test}(w T z)]
$$

And I understand that I get there by integrating Eq. (1.2) by parts with the TEST function. For example, if I take the first term, what I get is:

$$
\int_{a}^{b} \frac{\partial^{2} f}{\partial r^{2}} T(r) d r=\text { Constants }+\int_{a}^{b} \frac{\partial f(r)}{\partial r} \frac{\partial^{2} T(r)}{\partial r}=\text { More Constants }+\int_{a}^{b} f(r) \frac{\partial^{2} T(r)}{\partial r}
$$

