

Fig 1

1.A cantilever plate: the length 300mm, the width 200mm, the thickness 6mm; the clamped end dimension : the length 60mm, the width 50mm, the thickness 6mm.(see Fig 1)

2. The Young's modulus 56e9 Pa, the Poisson's ration 0.3, the density 2646kg/m^3.

3. Simulation the transfer function in the frequency domain, giving a hammer force 100N to the point 5, getting the acceleration response in the point 2. (See Fig 2) How to get?

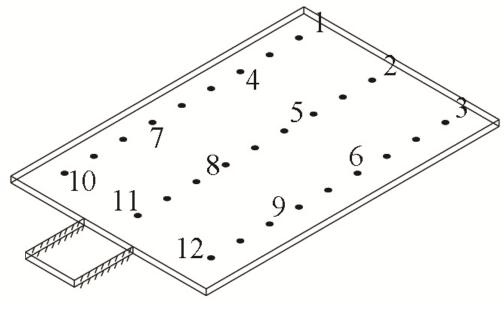
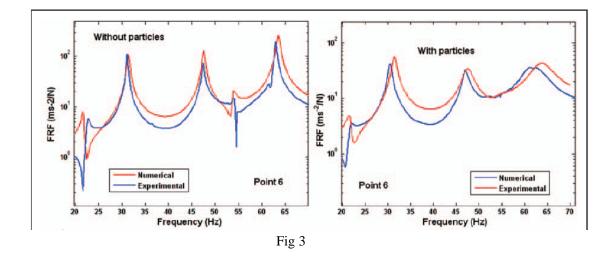
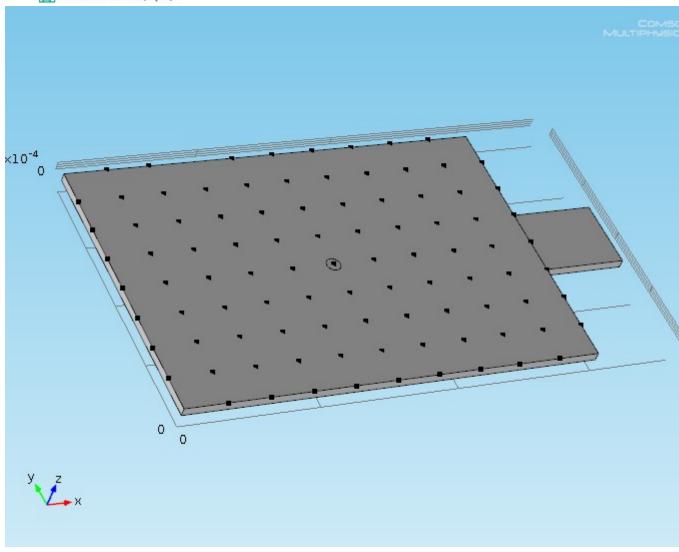



Fig 2

4. The simulation result looks like the Fig 3

I get some answers from the forum but I can not get final correct result. My process as follows:


1. First give step function;

2. Study in the time dependent;

How to do in the next step, I don't know?

	arameters		
Parame	ters		
Name	Expression	Value	Description
Ftot	100[N/m^2]	100.00 N/m ²	
	Step 1 <i>(step1)</i>		
Functio			
Functio	n Name name: step1		
Functio	n Name name: step1 ters		
Functio unction r Parame	n Name name: step1 ters		

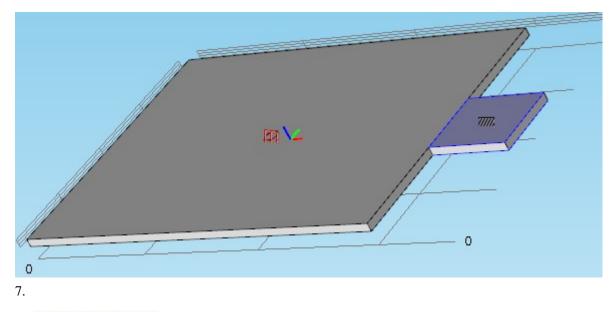
3. ★ Geometry 1 ♦ Block 1 (*blk1*) ♦ Block 2 (*blk2*) ♦ Work Plane 1 (*wp1*)

4.

Materials
 Material 1 (mat1)
 Basic (def)

- Output properties

Property	Variable	Expression	
Young's modulus	E	56e9	
Poisson's ratio	nu	0.3	
Density	rho	2646	


5

➡ Solid Mechanics (solid)
 ➡ Linear Elastic Material 1
 ➡ Damping 1

Dam	ping type:	
Ray	leigh damping	-
Mass	a damping parameter:	
α_{dM}	300	1/s
Stiffn	ess damping parameter:	

6.

Fixed Constraint 1

@ Boundary Load 1

Load type:

Loa	d:				
FA	User defined 🔹				
	0	x			
	0	у	N/m ²		
	Ftot*step1(t[1/s])	z			

		m \ _	
			0
8. Study 1 Step 1: Ti Solver Co Solver			
 Study Setting 	s		
Times:	range(0,0.02,0.6)	s Į.	
Relative tolerand	ce: 🔲 0.01		
🔲 Include geom	etric nonlinearity		