
Corona Discharge problem
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Electrostatics with potential :

Charge transport r:  

Imposed potential :

Peek’s boundary condition:
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Coupled physics

This is a 3rd order equation, with 3 
boundary conditions

(6)

At the emitter : 

(7)  = V0

at the collector (ground) : 

(8)  = 0

The third boundary condition is given by 
Peek's formula, which determines the 
value of the electric field at the 
emitter electrode :

(9)

The problem is well-posed. However 
under this formulation, it turns out to 
be very difficult to solve.     02  
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Litterature

This system of equation (6)-(9) has been 
solved in the past with several 
methods and using different kind of 
algorithms. See for instance 
reference [1]. All of them are based 
on a splitting between  and r, with 
an iteration scheme in order to reach 
convergence. None of them is based 
on a fully coupled scheme.

[1] S. Cristina, G. Dinelli, M. Feliziani, 
Numerical computation of corona 
space charge and V-I Characteristic in 
electrostatic precipitators, IEEE Trans. 
Ind. Appl. 27 (1) 147-153 (1991).

COMSOL Multiphysics allows for a fully 
coupled solution!



Rewrite the problem

The initial problem is easily transformed 
into 2 equations, one for , the other 
for r :

(10)

(11)

with boundary conditions :

(7)  = V0

(8)  = 0

(9) 

The equation for  requires 2 boundary 
conditions (8) and (9).

The equation for r is a first order 
equation and requires only one 
boundary condition. 

The problem is that there is no boundary 
condition for r : its value at the 
emitter is unknown and there is no 
simple way to determine it (apart 
from more elaborate plasma 
modeling). Instead, boundary 
condition (7) should be used, but 
how?
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New equation for r

In order to circumvent this problem, 
simply split r into 2 parts, the first 
one being constant and the other 
one being space-dependent  :

(12) r = r0p + dr

r0p is constant in space

dr is space dependent

Suppose r0p known

The equation is now set for dr:

(14)

With one very simple boundary 
condition :

(15) dr = 0 at the emitter electrode
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Equation for 

the equation for PHI is unchanged :

(13) 

with boundary conditions :

(8) =0

(9)
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Fix the constant r0

Remains the constant value at the emitter to be determined by a Lagrange multiplier 
r0 :

at one (arbitrary) point of the emitter P, COMSOL easily enforces the boundary 
condition (7) :

(7) 0 = V0-

through a Lagrange multiplier r0 that is integrated over the point P.

This equation is easily set-up with a “weak form, point” application mode.

The contribution to the weak form equation is set as (after integration by part) :

(16) rho0_test*(V0-PHI)

at one point P located on the emitter.



Remarks

Because r0 is only defined in point P, we need to use a so-called “integration coupling 
variable” which makes the source variable r0 available everywhere in the 
subdomain. The name of this new variable is defined as r0p. That explains why we 
use r0p and not r0 as constant value in the definition of r (equation (12)).

It is possible to solve the fully coupled problem in one single step if the initial 
condition for  is set-up so that it is consistent with the boundary conditions (don’t 
start from 0 as initial condition, since 0 is a trivial solution of the problem).

The most accurate way to find a good initial condition for  is to solve first for . Solve 
for all 3 equations with  as initial condition by clicking the restart button. Use the 
Solver Sequence in order to automatically store this 2-steps procedure.



1D axi or 2D



Full 3D


