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Abstract

While prosthetic joints can improve people's quality of life, there is an unmet need for the
treatment of post-surgery infections. A novel technology has been developed that can treat these
infections with electromagnetic heating. A series of anatomical models of knees with implants
have been developed for simulation of the heat treatment process. These simulations are
supporting the ongoing FDA approval process necessary to make the treatment device
commercially available to doctors. Initial CAD of a non-surgically repaired knee was used as a
baseline for developing a series of CAD models of surgically replaced knees for analysis.
Distinct regions in original knee CAD include skin, bone, muscles, ligaments, tendons, bursa,
nerves, veins, and arteries. In consultation with surgeons, appropriate femoral and tibial bone
cuts, bone drills, and tissue dissections were performed. Commercially available knee implant
system CAD was then indexed and placed in the knee with space left for cement. The final,
surgically replaced knee geometry was imported into a COMSOL Multiphysics electromagnetic
heating simulation model file of the prototype treatment coil. Extensive troubleshooting and
tweaking of the geometry finalization operations and meshing was required for a successful
mesh of the complicated assembly of tissues and implant domains. Without a CAD
representation of the cement paste applied at the time of surgery, cemented digital versions of
the knee implant system were generated using custom partial differential equation (PDE)
interfaces in COMSOL to solve for the spatial location of cement as a pre-processing step.
Transient thermal simulations for heat-up and cool-down cycles of the coil in operation predict
spatial distributions of temperature in the digital knees. Uniform high temperatures (75-80°C) in
known regions around the metal and cement are desirable as these are regions where infection
is common. On the other hand, damage to healthy tissue is a safety concern. To quantify the
effect of desirable and undesirable heating, CEM43 damage integration equations are solved
within COMSOL based on the transient temperature field. Numerical results are validated
against cadaver studies of the treatment without perfusion effects.
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Figures used in the abstract

Figure 1 : Computational regions



Figure 2 : Slice view of computational regions with material regions colored



Figure 3 : Two views of cement region binding implant metal to bone



Figure 4 : CEM43 in tissue after heating treatment
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